News

atomically thin semiconductors to make the world’s smallest lasers

dez 2018

transition-metal dichalcogenides are semiconducting materials that can be prepared in the shape of an atomically thin flake. these flakes can be brought into the confined electromagnetic field of microcavities to realize, amongst other things, very small laser devices. while few of these nanolaser devices have been experimentally investigated, not much is yet known about the mechanism behind lasing and the coherence properties.
in two recent publications, we have addressed the material and quantum-optical properties of TMD-based nanolasers. in [55], the material gain has been calculated on a material-realistic footing and used in a rate-equation theory to predict cavity-requirements and input-output characteristics for the common TMD materials. going further, we have used a simplified quantum-optical laser model to predict an unusual behavior of the coherence properties of such devices [54].

Masterarbeitsthema auf dem Gebiet der Quanteninformationstechnik zu vergeben

dez 2018

Informationen entnehmen Sie bitte der Ausschreibung.

Dr. Paul Gartner will be our guest for two months

april 2018

we are very much looking forward to Dr. Paul Gartner again coming to Bremen to work with us for two months from may-july. he will be a guest at our institute and of the graduate school QM3.

how long does it take for stimulated emission to become coherent?

april 2018

coherent emission of a laser is the result of stimulated emission, causing the excited gain medium to send out photons in phase. this is a fact that holds in many cases of conventional lasers. the truth is, however, that stimulated emission and coherence are two different things: the first results from an inversion of the gain medium and the presence of photons in the cavity. coherence, on the other hand, is the result of correlations that make the successive emission of two photons more than just the probabilites of their individual emission.

in collaboration with researchers at NIST we have identified operational regimes of nanolasers, in which stimulated emission and the formation of coherence do behave as two different things. in a photonic-crystal nanolaser that operates with short pulses, coherence forms only after the peak of the emission has ended, so that a large fraction of the stimulated emission is actually thermal. our results are published in Optica and shed new light on lasing in the presence of strong cavity-QED effects.

lasing from a GaN nanobeam

december 2017 / february 2018

our work on lasing from a two-dimensional GaN quantum well in a one-dimensional photonic crystal nanobeam cavity has been accepted for publication in nature communications right before christmas!

the publication is now online and can be downloaded here (open access).

Universität Bremen has released an official statement on the university homepage.

unveiling the physics of microcavity lasers

september 2017

in a news and view article in light: science & applications, Wiliam Hayenga and Mercedeh Khajavikhan give their point of view on the importance of second-order coherence properties for future design and understanding of high-beta nanolasers. their comment is published in light of our article in nature LSA by Sören Kreinberg and co-workers. thank you!

strong coupling at the laser threshold

august 2017

the cavity-QED regime of strong light-matter coupling is typically considered in the context of a weakly excited system. in a nanolaser that only operates with a handful of emitters, it is the natural regime because light-matter coupling needs to be strong to achieve sufficient gain to cross the threshold. at the same time, a laser is not a weakly excited system, but operates at stronger excitation. if you are interested to find out how the signatures and the presence of strong coupling become redefined in this „uncommon“ regime, please check out our article that has finally been published here.

textbook contribution on quantum dots for applications in the quantum-information technologies

july 2017

our theory contribution to the new springer text book on the role and potential of semiconductor quantum dots for applications in the quantum information technologies is available as a free preview on the springer page.

Dr. Paul Gartner is staying as guest researcher at our institute

july 2017

Paul Gartner has worked at the Institute for Theoretical Physics in Bremen for 15 years before moving back to his home town Bucharest. he is an expert on non-equilibrium greens functions, carrier kinetics, transport, quantum optics and the laser transition. we are pleased to welcome him in Bremen for two months to work on scaling behavior at the laser threshold and other problems with our group. we are grateful to the DFG to provide funding.

universality in a new class of nanolasers

february 2017

in a detailed study on a variety of quantum-dot micropillar emitters, we have identified a universal dependence of the emission- and coherence properties on the intracavity photon number. superradiant coupling between emitters is identified as source of coherence that does not rely on the presence of photons in the cavity, thereby increasing the „coherence per photon“ of the device.

our combined theoretical and experimental work has been accepted in light: science & applications published by nature. a preview of the article can be found here.

graduate school quantum-mechanical materials modeling QM3 to begin in january 2017

bremen will be the main hub for the recently granted graduiertenschule involving the univeristies in bremen, north bremen (Jacobs), oldenburg, and the max planck institute in hamburg. the aim of the program is research and education in the field of a new class of materials whose macroscopic properties are defined by design and manipulation on a microscopic scale. a prominent example are atomically thin layers of transition-metal dichalcogenides, such as MoS2 or WSe2, which are direct semiconductors with exceptionally large coulomb effects. in the graduate school, i am one out of 12 subproject leaders. more information on the web page http://www.rtg-qm3.de/

NEWS: signatures of radiative coupling in a quantum-dot nanolaser published in nature communications

our theoretical work on superradiance (link to phys. rev. applied) in quantum-dot nanolasers is an extension to conventional laser models. together with researches from the universities magdeburg, dortmund, and würzburg, a combined theoretical and experimental work has recently been published in nature communications. you can find the press release here.

NEWS: DFG funding

together with researchers from the technical universities in berlin and würzburg a dfg research grant has been approved to study the the few-emitter limits of lasing. more information on the project is found here.

work on two-dimensional semiconductors

our recent interest in the optical properties of two-dimensional materials has led to a couple of successful collaborations and publications. this effort will be increased in the framework of the graduate school QM3 starting 2017.

sketch of mos2 monolayer, by c. gies

review article on signatures of lasing in nanolasers

miniaturisation towards the ultimate limit of cavity-QED can fundamentally change the properties of a laser. in this regime, few solid state emitters or, in the extreme case even a single one, interact with the individual particles of light. how to identify and characterise the emission of such systems is the topic of our work in light: science&publications publised by nature.

Micropillar QD laser (fabricated in Bremen in the group of Prof. D. Hommel)

FOPS conference gallery

photographs of the FOPS conference, taken place at lake junaluska in august this year, are available as a web gallery.

correlation dynamics of individual photons

our publication on correlations between single photon-emission events has appeared in nature! for a brief summary see the press releases here and here.

 

Impressum

Datenschutz