Malte Schüler

List of publications

N. Néel, J. Kröger, M. Schüler, B. Shao, T. O. Wehling, A. Kowalski, and G. Sangiovanni
Single-Co Kondo effect in atomic Cu wires on Cu(111)
Phys. Rev. Research 2, 023309, 2020[arXiv:1912.05292].

M. Schüler, E. G. C. P. van Loon, M. I. Katsnelson, T. O. Wehling
Thermodynamics of the metal-insulator transition in the extended Hubbard model
SciPost Phys. 6, 067, 2019[arXiv:1903.09947].

Yann in ‘t Veld, Malte Schüler, Tim Wehling, Mikhail I. Katsnelson, Erik G. C. P. van Loon
Bandwidth renormalization due to the intersite Coulomb interaction
J. Phys.: Condens. Matter, 31, 465603, 2019[arXiv:1901.11257].

E Kamil, J Berges, G Schönhoff, M Rösner, M Schüler, G Sangiovanni, and T Wehling
Electronic structure of single layer 1T-NbSe2: interplay of lattice distortions, non-local exchange, and Mott–Hubbard correlations
J. Phys.: Condens. Matter 30, 325601, 2018 [arxiv:1804.03898].

M Schüler, O Peil, G Kraberger, R Pordzik, M Marsman, G Kresse, T Wehling, and M Aichhorn
Charge self-consistent many-body corrections using optimized projected localized orbitals
J. Phys.: Condens. Matter 30, 475901, 2018 [arxiv:1804.02055].

M Schüler, E van Loon, MI Katsnelson, and T Wehling
First-order metal-insulator transitions in the extended Hubbard model due to self-consistent screening of the effective interaction
Phys. Rev. B 97 165135, 2018 [arxiv:1706.09644].

B Shao, M Schüler, G Schönhoff, T Frauenheim, G Czycholl,  and T Wehling
Optically and Electrically Controllable Adatom Spin–orbital Dynamics in Transition Metal Dichalcogenides
Nano Lett. 17, 6721, 2017 [arxiv:1706.08365].

M Schüler, S Barthel, T Wehling, M Karolak, A Valli, and G Sangiovanni
Realistic theory of electronic correlations in nanoscopic systems
Eur. Phys. J. Special Topics 226, 2615, 2017 [arxiv:1707.08333].

E van Loon, M Schüler, MI Katsnelson, and T Wehling
Capturing nonlocal interaction effects in the Hubbard model: Optimal mappings and limits of applicability
Phys. Rev. B 94 (16), 165141, 2016 [arxiv:1605.09140].

M. Vondráček, L. Cornils, J. Minár, J. Warmuth, M. Michiardi, C. Piamonteze, L. Barreto, J. A. Miwa, M. Bianchi, Ph. Hofmann, L. Zhou, A. Kamlapure, A. A. Khajetoorians, R. Wiesendanger, J.-L. Mi, B.-B. Iversen, S. Mankovsky, St. Borek, H. Ebert, M. Schüler, T. Wehling, J. Wiebe, and J. Honolka
Nickel: the time-reversal symmetry conserving partner of iron on a chalcogenide topological insulator
Phys. Rev. B 94, 161114(R), 2016 [arxiv:1603.09689].

Søren Ulstrup, Malte Schüler, Marco Bianchi, Felix Fromm, Christian Raidel, Thomas Seyller, Tim Wehling, and Philip Hofmann
Manifestation of nonlocal electron-electron interaction in graphene
Phys. Rev. B 94, 081403(R), 2016 [arxiv:1604.00496].

M. Schüler, S. Barthel, M. Karolak, A. I. Poteryaev, A. I. Lichtenstein, M. I. Katsnelson, G. Sangiovanni, and T.  Wehling
Many-body effects on Cr(001) surfaces: An LDA+DMFT study
Phys. Rev. B 93, 195115, 2016 [arxiv:1512.01181].

Sumanta Bhandary, Malte Schüler, Patrik Thunström, Igor di Marco, Barbara Brena, Olle Eriksson, Tim Wehling, and Biplab Sanyal
Correlated electron behavior of metal-organic molecules: Insights from density functional theory combined with many-body effects using exact diagonalization
Phys. Rev. B 93, 155158, 2016 [arxiv:1506.07973].

M Schüler, C Renk, and T Wehling
Variational exact diagonalization method for Anderson impurity models
Phys. Rev. B 91, 235142, 2015 [arxiv:1503.09047].

M. Schüler, M. Rösner, T. O. Wehling, A. I. Lichtenstein, and M. I. Katsnelson
Optimal Hubbard models for materials with nonlocal Coulomb interactions: graphene, silicene, and benzene
Phys. Rev. Lett. 111, 036601, 2013 [arxiv:1302.1437].

List of Theses

Phd thesis
Theoretical approaches to realistic strongly correlated nanosystems

Master thesis
Tight-Binding-Modellierung von magnetischen Störstellen in Metallen
Tight binding model of magnetic impurities in metals

Bachelor thesis
Hartree-Fock-, Variations- und Configuration Interaction-Behandlung des Lithiumatoms
Hartree-Fock, variational and configuration interaction treatment of the Lithium atom