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Mean-field-like behavior of the generalized voter-model-class kinetic Ising model
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We analyze a kinetic Ising model with suppressed bulk noise, which is a prominent representative of the
generalized voter model phase transition. On the one hand, we discuss the model in the context of social systems
and opinion formation in the presence of a tunable social temperature. On the other hand, we characterize the
abrupt phase transition. The system shows nonequilibrium dynamics in the presence of absorbing states. We
slightly change the system to get a stationary-state model variant exhibiting the same kind of phase transition.
Using a Fokker-Planck description and comparing to mean-field calculations, we investigate the phase transition,
finite-size effects, and the effect of the absorbing states resulting in a dynamic slowing down.

DOI: 10.1103/PhysRevE.85.031126 PACS number(s): 05.50.+q, 64.60.De, 87.23.Ge, 89.65.−s

I. INTRODUCTION

Opinion formation models sparked considerable interest in
the physics community, partly due to their close relationship
to spin models (see Ref. [1] for an overview). Simple
mathematical rules for the outcome of discussions among
agents determine the dynamics of a system of agents, for
example, agreement including the time needed for consensus
or disagreement, as well as the spatial spreading of opinions
in terms of coarsening or segregation. Three interesting lines
of research in this field are the voter model, the universality
class of the generalized voter model, and the Sznajd model.

The voter model (VM) [2] for regular lattices describes
agents with two possible opinions, denoted as spin values ±1.
The agents are randomly chosen to adopt the opinion of one
of their nearest neighbors. This parameter-free Z2 symmetric
model includes absorbing states with total agreement, and thus
we have a nonequilibrium system. The VM turned out to be
one of the rare analytically solvable nonequilibrium models
(see Ref. [1] and references therein). Additional interesting
properties of the model are the lack of surface tension and a
slow domain growth with diffusively roughened interfaces in
two dimensions [3].

The universality class of the generalized voter model
(GVM) [3] is characteristic for systems with parameterized
interactions, which show a special nonequilibrium phase
transition between order (consensus) and disorder for certain
parameter variations. These systems may include the VM
at the critical point and exhibit an abrupt phase transition
(with a jump in the order parameter at the critical param-
eters), but, however, show critical divergences with specific
critical exponents for susceptibility (γ = 1) and correlation
length (ν = 1/2) [3]. Besides the directed percolation phase
transition the GVM phase transition is a central universal-
ity class of nonequilibrium phase transitions [4,5]. Many
new models showing a generalized voter transition were
defined and investigated, for example, using backward Fokker-
Planck equations, mean-field calculations, and Langevin
description [6–8].

The Sznajd model finally puts more emphasis on the
social interpretation, where persuasiveness increases with the
number of proponents [9] (see Ref. [1] for an overview of
dynamics and model variants). A similar effect of a winning
local majority is incorporated in majority rule models [1,10]. A

model with agents following local as well as global majorities
is used in the context of stock markets [11,12].

Here we analyze a kinetic Ising model with suppressed bulk
noise [13], which we believe to be an interesting paradigmatic
case. On the one hand, as argued in Ref. [3], it shows
generalized voter-like behavior, and it includes the voter model
at its critical point. On the other hand, we will discuss an effect
on the level of single agents comparable to the Sznajd model,
in the presence of a social temperature.

The model is defined in Sec. II. Its dynamics is described
briefly with special emphasis on the role of the model
parameter as social temperature. Finally, the presence of
absorbing states is discussed. In Sec. III we slightly modify
the model to avoid absorbing states. With this stationary-
state model variant we can describe the phase transition
with standard methods [14]. We find an abrupt jump of the
order parameter, but the fourth-order cumulant and critical
divergences at the phase transition emphasize the continuous
type of the phase transition. The stationary-state model variant
shares the same critical exponents as found with dynamic
nonequilibrium methods [3]. For the stationary-state model
variant we finally establish a Fokker-Planck description in
Sec. IV. We compare numerical results with analytical mean-
field results and thereby find a simple explanation for the
behavior at the phase transition. This behavior is also found for
a small-world variant of the model, being closer to real social
systems. With the Fokker-Planck description we also capture
finite-size effects. We find a divergence related to the absorbing
states even in the stationary-state model variant. This results
in a slowing down of the dynamics. In Sec. V we summarize
our results and give a brief outlook.

II. MODEL DESCRIPTION AND SOCIAL TEMPERATURE

We investigate a kinetic Ising model [13], which consists
of N = L2 agents on a two-dimensional torus with opinions
si = ±1. Every spin adapts in random sequential update to
its four next neighbors, and thus its state in the context of
its neighborhood is adequately described by (si,ui) with the
number of agreeing neighbors

ui =
∑

j∈nn(i)

δsi ,sj
(1)
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with nn(i) denoting the nearest neighbors of agent i. Because
we want to model equivalent opinions, the probabilities
for spin flips (si,ui) → (−si,4 − ui) are spin independent:
p(ui )→(4−ui ). With the convention p(u)→(4−u) + p(4−u)→(u) = 1,
as in a heat bath Monte Carlo simulation of the Ising model, we
immediately get p(2)→(2) = 1/2, leaving only two independent
parameters, p(4)→(0) (isolation, bulk noise) and p(3)→(1) (join
minority, interfacial noise).

Heat bath flipping probabilities for the Ising model (with a
coupling constant of one) in our notation read as p(u)→(4−u) =
[1 + exp(−β(8 − 4u)]−1 with the inverse temperature β. This
relates the two independent parameters to each other and leads

to an equilibrium system with defined temperature obeying
detailed balance for single spin flips [13] (by construction of
the heat bath algorithm). In kinetic Ising models this relation
is not fulfilled. Such models can be understood as being
coupled to two heat baths of different temperatures [13], and
thus they experience a flux of heat, leading to a first sign of
nonequilibrium behavior, which will be supplemented by a
more drastic nonequilibrium property later.

We here introduce a system without voluntary isolation of
agents, which means the lack of bulk noise or, in other words,
zero temperature of bulk noise. This leads to the following
transition probabilities:

p(4)→(0) = 0, p(0)→(4) = 1 (no isolation or no bulk noise),

p(3)→(1) = 1

1 + exp(4β)
, p(1)→(3) = 1 − p(3)→(1) (interfacial noise).

This single-parameter model for any β shares the property of
the voter model, where agents adopt only opinions that actually
exist in their neighborhood. This property is reasonable since
total isolation seems to be a quite rare event in social systems.
In the voter model every neighbor influences an agent with the
same persuasiveness, since one of its neighbors is randomly
chosen for his update. Thus we get p(u)→(4−u) = (4 − u)/4,
which is a special case in our model defined by p(3)→(1) =
1/[1 + exp(4/TV )] = 1/4 with the special temperature TV =
4/ ln(3) ≈ 3.641. For smaller temperatures the model shows
an increased persuasiveness of groups of agents, p(1)→(3) >

3p(3)→(1), as illustrated in Fig. 1. This motivates the name
group-voter model (GRVM). This effect, which motivated
models like the Sznajd model and majority models [1], is
incorporated in our model in a continuously tunable way.
For higher temperatures T > TV , local majorities have a
suppressed persuasive power. Agents adopt any opinion in
their neighborhood without trusting majorities, which can be
seen as a panic-like behavior.

In Fig. 2 the coarsening dynamics starting from random
initial conditions can be seen for the different temperature
regimes and a system of N = 5002 agents. For low tempera-
tures (top line), where local majorities are strongly preferred
and thus single agents follow group opinions, we see ordering
dynamics leading to an ordered phase. So the group-following
tendency has an ordering effect compared to the pure voter
model. At T = TV we get the voter model with slow cluster

isis is is

T<T T=T T>TV V VT=0

FIG. 1. Illustration of the persuasiveness an agent si receives from
its neighbors for different temperatures T . For low temperatures,
majorities convince stronger. For high temperatures, the agent follows
any present opinion in a panic-like mood.

growth and roughened surfaces. At this temperature we find
a phase transition from order to disorder (see below). At
this point the temporal decline of the density of surfaces
changes from power-law behavior through logarithmic decline
to saturation [3]. For T > TV we see a disordered noisy system,
so the lack of trust of single agents in local majorities has a
destabilizing effect.

Summarizing, an increasing temperature leads to a de-
creasing group effect (Fig. 1), and simultaneously it leads
to an increased dynamical temperature (Fig. 2). This can
be interpreted as follows: In a faster changing environment,
any opinion provided by any neighbor seems interesting,
and single neighbors might be right by chance. In the limit
of infinite temperature, opinions that are present in the
neighborhood lead to adaption with probability 1/2 regardless
of minorities or majorities. On the other hand, decreasing trust
in local majorities indeed accelerates the dynamics, so the

T < TV

T = TV

T > TV

FIG. 2. Lattice states (L = 500) for T = 0.9TV (top), T = TV

(middle), and T = 1.1TV (bottom) at increasing times t = 1000 (left),
t = 10 000 (middle), and t = 50 000 (right). The changing ordering
dynamics indicates a phase transition at TV , where the dynamics is
identical to the voter model.
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FIG. 3. (Color online) Left: Magnetization over time t for T =
1.02TV and L = 75. Right: Magnetization density. Absorbing states
can be observed.

described effect is self-consistent. The complementary micro-
and macro-effects of the parameter T ranging from group
following and ordered states to panic reactions and disordered
states allow us to interpret it as a social temperature.

For T > TV the system remains in a state in which the
magnetization per site

m = 1

N

∑
j

sj (2)

oscillates around zero. Note that the amplitude of the oscil-
lations is smaller for higher temperatures and higher system
sizes. In Fig. 3 we finally see the presence of absorbing states
for a system with L = 75 and T = 1.02TV . The system is in
the disordered state and oscillates around zero magnetization
for more than 1 million sweeps, and the according density of
magnetization

ρ(m′) = 1

c

∑
t

δm′,m(t) (3)

with the normalization constant c and the Kronecker δi,j sug-
gests that the system reached a stationary state. Nevertheless
the system finally gets trapped in an absorbing state. These
absorbing states exist due to the absence of bulk noise. In
finite systems they are reached for any temperature and system
size. Thus the system starting from random initial conditions
performs a transient nonequilibrium dynamics.

The description of nonequilibrium systems is somewhat
complicated. There are different approaches to deal with
the properties associated with nonequilibrium systems. One
possible way is to investigate the phase-ordering dynamics
and recover dynamic critical exponents [3].

Here we use a different procedure. We slightly change the
dynamics to prevent the system from reaching the absorbing
state. We will describe and investigate the resulting stationary-
state model variant in the next section.

III. STATIONARY-STATE MODEL VARIANT AND
THE PHASE TRANSITION

Similar to Ref. [15], we use a minimal modification of
the original model to get an estimation of the quasistatic
properties. We let a little daemon keep the last remaining spin
from flipping, which prevents the system from reaching the
absorbing states. The modified model reaches a stationary
state, which is used for the evaluation of the statistical
quantities. As shown by Dickman and Vidigal [14], such
methods are suitable for studying the universal behavior of
transient dynamics that otherwise would decay into absorbing
states. As we still have a system coupled to two heat baths with
different temperatures, our system exhibits a nonequilibrium
stationary state (NESS).

We show that the daemon rule indeed is minimal by
comparing it to a different procedure. In the case of a nonzero
isolation probability p4→0 = αp3→1 with little α a little bit
of bulk-noise is introduced. The magnetization for different
L is shown on the right-hand side of Fig. 4. The phase
transition of the system with tiny bulk noise is Ising-like. The
smooth transition can also be observed for bigger L, although
α = 10−4 is already considerably small. This suggests that the
limit α → 0 in addition to L → ∞ must be taken to model the
phase transition of the GRVM. The daemon rule produces a
phase transition, however, which displays the abrupt change in
magnetization m. This is shown on the left-hand side of Fig. 4.
Note that the impact of the daemon rule decreases for bigger
L, whereas the impact of the method with bulk noise remains
constant.

Although this method eliminates the existence of absorbing
states and produces a system with a suitable stationary state,
the absence of bulk noise gives rise to another problem. If the
system is in a state where the daemon is needed, it is likely
that the system will remain in this state for an extended amount
of time. Time series of m and the corresponding densities for
four different T with 5 million sweeps and L = 100 are shown

0

 0.5

1

 0.99 1  1.01

|m
|

T/TV

 0.99 1  1.01
T/TV

L = 100
200
400

FIG. 4. (Color online) Comparison of the stationary-state model
variants with the daemon rule (left) and with bulk noise (α = 10−4,
right) with the dashed line (daemon rule for L = 400) for comparison.
The daemon rule reproduces the jump of the control parameter in the
thermodynamic limit.
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FIG. 5. (Color online) Comparison of magnetization m over time
t (left) and its density ρ (right) for different temperatures T for
L = 100. From top to bottom: T = 0.9846TV , T = 1.0002TV , T =
1.0046TV , and T = 1.6717TV . The time spent near the absorbing
states is long for T ≈ TV , giving rise to a slowdown of the simulation.

in Fig. 5. The absorbing states dominate the time series of m

for T < TV . For T ≈ TV the system spends a finite time in
states where |m| is not close to 1, but states with |m| close to
1 are still the most frequent states, and the system spends a
typical time of approximatively 1 million sweeps near one of
the absorbing states. If we consider the plots corresponding to
T = 1.0046TV , we see that although a clear maximum in the
magnetization’s density ρ can be found at m = 0, the system
spends a considerable time in a state in which |m| is close
to one. This effect is a sign of the absorbing state around
|m| = 1 due to vanishing diffusion, as will be discussed in the
next section. The effect increases with system size and thus
facilitates finite-size scaling. It must be taken into account
additionally to the critical slowing down, and it dramatically
enhances the number of sweeps needed for good statistics.

To examine the critical behavior at the phase transition we
first observe the fourth-order cumulant UL. We evaluate UL

with the time series of the magnetization using

UL = 1 − 〈m4〉
3〈m2〉2

. (4)

UL can be used to determine the order of transition [16]: A
first-order transition would have a UL that displays a clear
minimum. This minimum gets closer to the system’s critical
parameter as L gets bigger. A second-order transition has a
UL that starts at 2

3 and falls monotonously to zero as T grows.
The UL intersects at the critical parameter of the system.

The calculated fourth-order cumulant (Fig. 6) is 2
3 for

T < TV and falls to zero for T > TV . This behavior is in
agreement with a second-order phase transition. The system
has therefore a discontinuous phase transition with critical
behavior as typical for continuous phase transitions.

Due to the phase transition with continuous properties a
critical behavior with scaling laws is expected. We evaluate
the susceptibility and the correlation length to determine the
scaling exponents γ and ν. The correlation length ξ can
be measured by evaluating the structure factor [17], which

-0.2
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 0.98  0.99 1  1.01  1.02  1.03
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L

T/TV

L=100
200
400
800

FIG. 6. (Color online) The fourth-order cumulant UL over the
temperature for different system sizes L2. The typical behavior for a
continuous phase transition can be observed.

is often used in solid-state physics. The structure factor is
obtained using S(	k) = |s̃ ′(	k)|2, where s̃ ′ = F {s ′} is the Fourier
transformed grid s ′ = s − m. Note that this definition ensures
that states with large magnetization lead to small values of ξ .
We take the circular average over k and get S(k). The structure
factor should go to zero as the magnitude of 	k approaches zero
or infinity, and thus S(k) displays a peak at the k′ corresponding
to the average domain size. Here ξ = 2π/k′ was calculated by
using

k′ =
∫ ∞

0 kS(k) dk∫ ∞
0 S(k) dk

. (5)

The simulations were performed with 5 million sweeps.
After the system reached its stationary state, ξ was calculated
every 10 000 sweeps to ensure uncorrelated results. An average
of the domain size ξ and the error given by the standard
deviation were therefore possible to acquire. The error near
the critical point is relatively large. One could assume that
the errors would be smaller if ξ was calculated more often,
for example, every 100 sweeps. This is not the case, since the
discussed slowing down has to be considered. As shown in
Fig. 5, the time required to go through a sufficient number
of states is large for T ≈ TV . So only larger time series can
improve the statistics.

If we plot the correlation length over the reduced tem-
perature (ε = T −TV

TV
), we should observe the typical critical

behavior ξ ∝ |ε|−ν . The exponents obey the relation

γ = dν − 2β. (6)

Since there is a jump in the order parameter (β = 0) and the
dimension is d = 2, the remaining exponents obey γ

ν
= 2. We

expect ν = 1
2 for the universality class of the GVM [3]. As

shown in Fig. 7 an exponent of ν = 1
2 fits the obtained data

nicely.
To evaluate the remaining critical exponent γ the suscepti-

bility χL is needed. We calculate χL as proposed in Ref. [18]
by using the time series of m,

χL = N (〈m2〉 − 〈|m|〉2) ∝ |ε|−γ . (7)
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FIG. 7. (Color online) Correlation length ξ for different system
sizes L2 over reduced temperature ε. Dashed line: Plot of ξ ∝ ε−1/2

to compare the data to the expected critical exponent.

The exponent γ can be found by introducing the reduced
susceptibility given by

χ̃ (ε̃) = χ̃
(
εL

1
ν

) = χL(ε)L− γ

ν . (8)

The reduced susceptibility χ̃ plotted against ε̃ = εL
1
ν for

different L should collapse for T < TV given the correct γ , ν,
and critical temperature TC . This was realized for different L

(Fig. 8). The chosen parameters to obtain Fig. 8 were γ

ν
= 2

and TC = 0.9997TV .

IV. FOKKER-PLANCK EQUATION AND MEAN-FIELD
DESCRIPTION

As a starting point for the Fokker-Planck description of the
dynamics, we use transition probabilities for the magnetization
p±(m) ≡ pm±�m,m for single time steps �t = 1/N with
�m = 2/N , which describes a single possibly flipping spin.
With these two switching probabilities at hand, the Fokker-
Planck equation can be deduced in a very simple way as
described in the following. We analyze the time evolution of the

10-1
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-0.04 0  0.04

χ
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L=100
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χ~

(T-TV) L2
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FIG. 8. (Color online) Left: susceptibility χ as a function of T −
TV . Right: reduced susceptibility χ̃ as a function of (T − TV )L2 =
ε̃ TV with γ

ν
= 2 and TC = 0.9997TV .

probability density of the magnetization P (m,t) by performing
a Taylor expansion [with �P = P (m,t + �t) − P (m,t)]:

�P

�t
= p+(m − �m)

�t
P (m − �m,t)

+ p−(m + �m)

�t
P (m + �m,t)

−
[
p+(m)

�t
+ p−(m)

�t

]
P (m,t)

≈ − ∂

∂m

{
�m

�t
[p+(m) − p−(m)]P (m,t)

}

+ 1

2

∂2

∂m2

{
�m2

�t
[p+(m) + p−(m)]P (m,t)

}
. (9)

This leads to the Fokker-Planck equation:

∂P

∂t
= − ∂

∂m
[a1(m)P (m,t)] + 1

2

∂2

∂m2
[a2(m)P (m,t)], (10)

a1 = �m

�t
[p+(m) − p−(m)], (11)

a2 = �m2

�t
[p+(m) + p−(m)] (12)

with the drift term a1(m) and the diffusion term a2(m). Using
a potential for the drift term a1(m) = − d

dm
V (m) the phase

transition can be understood. Additionally with the diffusion
term a2(m) and the stationary solution

Ps(m) = c

a2(m)
exp

[
2
∫ m

m0

a1(m′)
a2(m′)

dm′
]

(13)

with the normalization constant c, finite-size effects can be
investigated.

To calculate the properties of interest, the transition
probabilities p±(m) are needed. For simulations on the grid,
they are calculated using the time series m(t) (with single
step resolution �t = 1/N ). With �m(t) = m(t + �t) − m(t)
we get

p±(m) =
∑

t δ�m(t),±�mδm(t),m∑
t δm(t),m

. (14)

We want to compare our results to mean-field calculations,
which we calculate using the flipping probabilities p(u)→(4−u)

and

p±(m) =
4∑

u=0

N(∓,u)(m)

N
p(u)→(4−u) (15)

with N(s,u) being the total number of spins with the state
(s,u). Assuming N(s,u) to have a strict dependence on
the magnetization is reasonable for the mean-field case, where
we get (including the unlikely case of twice choosing the same
neighbor)

NMF
(s,u)(m) = N(s)

N

(
N(s)

N

)u(
N(−s)

N

)4−u

=
(

m + s

2

)u+1(
m − s

2

)4−u

(16)
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and thus finally calculate

aMF
1 (m) = −2

(
p(3)→(1) − 1

4

)
m(1 − m2), (17)

V MF(m) = φv

(
p(3)→(1) − 1

4

)(
m2 − m4

2

)
+ v0, (18)

aMF
2 (m) = 2

N

[
(1 − m2) +

(
p(3)→(1) − 1

4

)
m2(1 − m2)

]

≈ φa

2

N
(1 − m2), (19)

P MF
s (m) ≈ c

1 − m2
exp

[
− φr

(
p(3)→(1) − 1

4

)
m2N

]
(20)

with approximate results for |p(3)→(1) − 1/4| 
 1. The pa-
rameters φ are needed for a fit procedure later. They are
φv = φa = φr = 1, v0 may be chosen, and c is a normalization
constant.

The symbols in Fig. 9 show results for the drift potential
V (m) (top), the diffusion term a2(m) (middle), and the
density ρ(m) (bottom) for the following temperatures around
the critical temperature (from left to right): T = 0.997TV ,
T = TV , T = 1.006TV , T = 1.016TV . The system size was
chosen as N = L2 = 1002, and for the lower temperatures
time series of 6 × 108 sweeps were performed; for the higher
temperatures 2 × 108 sweeps sufficed. So we used altogether
more than 1012 steps in Eq. (14). The dashed lines in the figure
are fits of the mean-field functions (18)–(20) to the measured
data, and the fit parameters φv , φa and φr are given (two of
them are not defined in the critical case). As we can see, drift
and diffusion are suppressed compared to the mean-field case,
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a 2
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-1 -0.5  0  0.5  1
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φr=0.31

FIG. 9. (Color online) Drift potential V (m) (top), diffusion term
a2(m) (middle), and density ρ(m) (bottom) for different temper-
atures (from left to right T = 0.997TV , T = TV , T = 1.006TV ,
T = 1.016TV ), and L = 100. Measured data (+) are compared to
mean-field results with good agreement. The fitting parameters say
that diffusion and drift are suppressed compared to the mean-field
case. The drift potential clarifies the phase transition. The vanishing
drift at |m| = 1 leads to a divergence in the density, related to the
absorbing states connected with a dynamic slowing down.

which leads to an effect to the density, which might be seen
as a temperature-stretching procedure away from the critical
temperature TV . Apart from that, the system shows perfect
mean-field-like behavior. With this knowledge we are able to
discuss the phase transition including the critical exponents
and the finite-size properties of the system including the role
of the absorbing states.

To discuss the phase transition, we have to consider the
case N → ∞. From calculations performed for N = 202 and
N = 502 we know that the system behaves mean-field-like
in all these cases, with shrinking parameters φv , φa , and φr

for increasing N . The drift correction shrinks faster than
the diffusion correction; however, diffusion is additionally
proportional to 1/N , and thus the influence of fluctuations
shrinks with increasing system size. In the thermodynamic
limit we thus have to consider the minima of the potential
V (m) as shown in the top line of Fig. 9 (see also Refs. [6–8]).
The position of the minima performs a jump from |m| = 1
to m = 0 at T = TV , and thus we have an abrupt phase
transition with exponent β = 0. At the temperature TV the
potential vanishes, which corresponds to the vanishing drift
in the voter model. Adding a term −hm to the potential
in Eq. (18), we can calculate the susceptibility χ = ∂m

∂h
by

calculating the minimum m(h) and thus prove the mean-
field exponent γ = 1, because near the phase transition we
get χ ∝ (p(3)→(1) − 1

4 )−1 ∝ (T − TC)−1 (strictly speaking the
magnetization m = ±1 in the ordered phase can be influenced
only by a field h of the opposite sign).

Finite-size effects are especially visible in the densities,
as can be seen in the bottom line of Fig. 9 and in Eq. (20).
Integrating the density, the term (1 − m2)−1 resulting from the
vanishing diffusion at m = ±1 (with simultaneously vanishing
drift) leads to a divergence (compare Refs. [14,15]). In the
simulations the daemon keeps the last spin from flipping,
and thus the integration limits are reduced to |m| = 1 − 2/N .
Nevertheless, the absorbing states can be seen around |m| = 1,
as for increasing system size N , the system with a temperature
near the phase transition (and even in the disordered phase,
as can be seen for T = 1.006TV in Fig. 9) will spend an
increasing amount of time near the absorbing state. So we
again get a system that is trapped by the absorbing state if the
system once moves to this state. This causes a slowing down
in simulations, which is even more influential than the critical
slowing down in equilibrium systems and results in a poor
convergence.

Finally, we want to discuss a small-world variant of the
system, where some of the nearest-neighbor grid connections
are rewired. It is quite meaningful to cover this case in
the social context, since social networks are known to have
small-world properties. Because the small-world network is
somewhere between the grid (large diameter) and the mean-
field case (diameter of one), and the results on the grid are
qualitatively mean-field-like, the results for the small-world
variant should be mean-field-like as well.

We start from the grid and use directed links, which are
directed from influential agents to the influenced ones. So an
agent takes into account four in-links to calculate the switching
probabilities, or more precisely the opinions of the agents on
the other end of the in-links. We rewire 5% of the in-links by
randomizing the starting points of the links and keeping the

031126-6



MEAN-FIELD-LIKE BEHAVIOR OF THE GENERALIZED . . . PHYSICAL REVIEW E 85, 031126 (2012)

-5⋅10-5

 0

 5⋅10-5

 1⋅10-4

 2⋅10-4

V

φv=0.385

φv=0.383 φv=0.387

 0

 5⋅10-5

 1⋅10-4

a 2

φa=0.573 φa=0.574 φa=0.576 φa=0.577

 0

 0.5

 1

 1.5

-1 -0.5  0  0.5  1

ρ

m

φr=0.678

-1 -0.5  0  0.5  1
m

-1 -0.5  0  0.5  1
m

φr=0.667

-1 -0.5  0  0.5  1
m

φr=0.669

FIG. 10. (Color online) As in Fig. 9 for a small-world variant
with 5% rewired links and temperatures (from left to right) T =
0.998TV , T = TV , T = 1.003 TV , T = 1.006TV . The shortcuts lead
to increased drift and diffusion.

end points, which keeps all in-degrees to be four and changes
only the out-degree of several agents (since single agents might
have an out-degree of zero, we have to change the daemon rule
to act on more than one last spin). Figure 10 shows results for
the small-world network as in Fig. 9, here for the temperatures
(from left to right) T = 0.998TV , T = TV , T = 1.003TV , and
T = 1.006TV . We find the same mean-field-like behavior as
for the grid and conclude that the same kind of phase transition
should appear. The fit parameters φ are closer to the mean-field
case φv = φa = φr = 1, and we found using calculations for
N = 502 that these fit parameters do not remarkably change
for increasing system size, which is in accordance to slowly
growing diameters in small-world networks.

V. SUMMARY

We investigate a kinetic Ising model with suppressed
bulk noise, which is known as a prominent representative

of the generalized voter model phase transition. For low
temperatures, we emphasize the effect of enhanced persua-
siveness of groups on the level of single agents. This leads
to ordered states compared to the pure voter model. Similar
effects are implemented in opinion formation models as
for example the Sznajd model or the majority rule model.
For high temperatures the opposite effect of lacking trust
in majorities can be observed, which leads to increasingly
disordered states. Through the model parameter T the group
effect can be tuned, which leads to a changing behavior
of single agents and the system as a whole as well. This
effect allows us to identify the model parameter as a social
temperature. So we find that this single parameter system not
only shows interesting properties for its behavior at the phase
transition, but also provides intuitive rules at the level of single
agents.

To describe the system using its transient quasistatic
properties, we change the dynamics using a minimal rule,
which prevents that absorbing states are reached. We find
the generalized voter model transition, as has been found for
the original system [3]. With the fourth-order cumulant we
emphasize the continuous type of the phase transition despite
the jump in the order parameter.

Finally, we derive the Fokker-Planck description of the
phase transition. We measure drift and diffusion using nu-
meric time series and compare it to analytic mean-field
results. We find perfect mean-field behavior, only with
suppressed diffusion and drift. With this we understand
the abrupt phase transition including the value of the crit-
ical exponent γ . We additionally find a divergence in the
magnetization density due to vanishing drift and diffusion,
related to the absorbing states. This leads to a dynamic
slowing down.

As a system between grid and mean field, we also check
a small-world variant. This system shows exactly the same
mean-field-like behavior, but diffusion and drift are less
suppressed. This system is more similar to real social systems
with small-world properties.

In summary we obtain a physical understanding of the voter
model class in terms of a kinetic Ising model, obeying mean-
field dynamics.
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