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Abstract

The stability of money value is an important requisite for a functioning economy, yet it criti-
cally depends on the actions of participants in the market themselves. Here we model the value
of money as a dynamical variable that results from trading between agents. The basic trading
scenario can be recast into an Ising-type spin model and is studied on the hierarchical network
structure of a Cayley tree. We solve this model analytically and observe a phase transition
between a one-state phase, always allowing for a stable money value, and a two-state phase,
where an unstable (in4ationary) phase occurs. The onset of in4ation is discontinuous and follows
a 5rst-order phase transition. The stable phase provides a parameter region where money value
is robust and can be stabilized without 5ne tuning.
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1. Introduction

One of the astonishing facts in economics is the widely observed stability of the
value of money [1]. In models of economic activity often well-de5ned mechanisms are
introduced that ensure this property, e.g. by assuming a central agent or market maker
who supervises the global dynamics and enforces market clearance. However, real
markets already function solely on the basis of the interactions between trading agents
[2], raising interesting questions about the validity of equilibrium approaches based on
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central agents [3]. This includes the question how the basic dynamics of a decentralized
economy can lead to the emergence of money without any explicit central processes of
5xing global variables [4,5]. Simple numerical models of exchange of goods between
agents [6,7] as well as experimental studies [8,9] support the scenario that the value
of money appears as a dynamical variable that results from the dynamics of trading
itself.
Money as a free parameter in a system of trading agents has been studied by Bak

et al. [10] recently, who cast the problem into a picture consisting of simple agents
and 4ows of money and goods between them. They place the agents on a line, s.t.
each trader sells goods to his left neighbor and buys products from his right neighbor.
Combining this system with a periodic boundary condition by closing the line to a
circle, they observe that the value of money, in general, converges to a stable state
and emerges as a dynamical phenomenon in this setting. They conclude that the general
picture of this model will also apply to the more complicated heterogeneous networks
of agents that in general dominate economy.
However, as the dynamics of this model crucially depend on a very speci5c choice

of the boundary condition, and as a higher dimensional scenario as well as hierarchies
between traders may fundamentally change the dynamics, we would like to complement
this model by a spatial trading model, oEering an alternative interpretation of Jevons’
motivation to understand the emergence of money [11]. We will study trading on a
hierarchical network which allows us to include the interesting aspect of hierarchy in the
monetary business. Also, moving to higher dimensions bears the interesting possibility
that a trader with more than two neighbors has extra degrees of freedom to optimize
himself by choosing appropriate deals and partners. Finally, we will reformulate this
model in terms of an Ising type spin model that can be solved explicitly.
In the next section we will introduce the basic trading model on a network with

dimension greater than one. Section 3 is devoted to the problem of competing agents
in the presence of a variable money value. In Section 4, we solve an Ising spin
realization of the model and study its phase transitions and the conditions for a stable
value of money.

2. A network trading model

Let us consider a model where an agent N sells goods which are traded via N − 1
intermediary agents to consumers at level n= 0. This is called the selling mode. The
goods are returned by a second chain where agent N buys goods, which are traded
via N − 1 diEerent intermediaries from n=0 (buying mode). Combining both, buying
and selling chain, one obtains the circular geometry of Ref. [10]. Let us now allow
the more general scenario that in the selling (or buying) mode each agent can sell
to (buy from) z − 1 agents. The linear chains (z = 2) are replaced by the so-called
Cayley tree with z neighbors (see Fig. 1). The agents are located at the sites or
nodes, while goods and money 4ow along the links of the tree. The agents (n; i) are
indexed by the distance n from the right-hand side of the tree. The index i distin-
guishes diEerent agents at the same distance and will be written only if necessary. For
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Fig. 1. Selling mode and buying mode for z = 3 on a Cayley tree. The arrows show the 4ows of goods
qn+1; i , while money 4ow gn+1; i is opposite to qn+1; i at each link and is not explicitly shown.

the amount of goods qn; i 4owing between agents n and n− 1; i we use the normalized
variable

Iqn; i =
1

(z − 1)n−1 qn; i : (1)

The amount of traded goods is described by two utility functions. If an agent n sells
q at the price p he gains the utility

u(S)n = In Iqp− c̃( Iq) : (2)

In denotes the value of money and c̃( Iq) the decrease of u by losing q. Similarly, if
the agent buys q at price p the utility reads

u(B)n = d( Iq)− In Iqp : (3)

It is important to use the normalized 4ow of goods (1) instead of q for the following
reason. In the monopolistic equilibrium all the money values In are the same and all
goods are conserved. Therefore, the goods qn increase with (z − 1)n−1. Then, utilities
(2) and (3) express the assumption that an agent level of n gets the same utility by
trading qn=(z− 1)qn−1 as the agents at level n− 1 trading qn−1. As in Ref. [10] each
agent n can choose its own money value In, the amount of bought goods qn+1, and the
price pn; i for sold goods qn; i. For a meaningful problem one has to use the following
assumption, also made in Ref. [10]. The time scale on which the q or p change is
much shorter than the scale of changing the money values. Therefore we can optimize
the coupled system (2) and (3) with 5xed values of In. An additional dynamics must
be used for 5nding In from q(I) and p(I). For the utility functions d and c̃ power
laws have been used in Ref. [10]. This property is not really needed. It is suKcient for
c̃ to increase faster than, and for d less than linearly for large Iq. To avoid algebraic
complications, we here use for d a power law

d(x) =
1
�
x� with �¡ 1 (4)
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and for c̃ a power law only in the example of Section 4

c̃(x) =
1
�
x� with �¿ 1 : (5)

In the general case, c̃ must have positive 5rst and second derivative. Having performed
the optimization all quantities can be expressed by the Legendre transform of c̃(s1=�)
denoted by c(r). For the power law (5) we get

c(r) =
�− �
��

(�r)�=(�−�) : (6)

The optimization is slightly diEerent in the buying or selling mode. In the latter we
have for each agent n

u(B)n =
1
�

Iq�n+1 − In Iqn+1pn+1 n= 0; : : : ; N − 1 ; (7)

u(S)n = In
∑
i

[ Iqni pni − c̃( Iqni)] n= 1; : : : ; N : (8)

Since
∑

i c̃( Iqi)¡c̃(
∑

i Iqi) the agents n will handle each selling to agents n − 1; i
separately, and not lump all requests qni into a single order. The optimization begins
at n= 0, where only u(B)n is present. The maximum of (7) leads to the value Iq1. This
value Iq1i(p1i) is used to optimize p1i in u

(S)
1 given by (8). This procedure is repeated

to the top agent N . The resulting values of traded goods and money 4ow gn; i from
n− 1; i to n

gn; i = qn; ipn; i (9)

are given by

qn; i = (z − 1)n−1
[
c′
(

In
In−1; i

)]1=�
; (10)

gn; i = (z − 1)n−1 1
In−1; i

c′
(

In
In−1; i

)
: (11)

One sees that the goods 4ow and the valued money 4ow In; ign; i only depend on the
ratios In=In−1, but not on the absolute scale of I . The value of utilities in (7) and (8)
at the maximum are given by

u(B)n =
1− �
�

c′
(
In+1

In

)
(12)

and by

u(S)n =
z−1∑
i=1

c
(

In
In−1; i

)
: (13)

The buying mode can be treated with the same method. It can be obtained from
the selling mode by interchanging at each link (n; n − 1; i) the adjacent In and In−1.
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This leads to

qn; i = (z − 1)n−1
[
c′
(
In−1; i

In

)]1=�
;

gn; i = (z − 1)n−1 1
In
c′
(
In − 1; i
In

)
(14)

and the utility functions at maximum

u(B)n =
1− �
�

z−1∑
i=1

c′
(
In−1; i

In

)
;

u(S)n = c
(
In
In+1

)
: (15)

In the case of the linear chain (z = 2), the only diEerence between selling and buying
is a reordering of I , which is performed in Ref. [10] by placing the agents on a circle.
We can consider the normalized money ratio at site n given by (in the selling mode)

Mg(n+ 1; n; i) = (z − 1)
gn−1; i

gn
=

In
In−1; i

[
c′
(

In
In−1; i

)/
c′
(
In+1

In

)]
: (16)

Note that Mg is only a function of the ratios

rn; i =
In+1

In; i
: (17)

Further, money conservation at agent n implies
z−1∑
i=1

Mg(n+ 1; n; i) = z − 1 : (18)

For r ¿ 1 money is accumulated at agent n, while r ¡ 1 means that money has to be
borrowed. Therefore in the selling mode r ¡ 1 implies an in4ation, while values r ¿ 1
imply de4ation. In the buying mode r is essentially replaced by 1=r such that Mg is
given by

Mg(n+ 1; n; i) =
In+1

In

[
c′
(
In−1; i

In

)/
c′
(
In
In+1

)]
(19)

and the reversed statements are true.
In the case of z = 2 in Ref. [10], the condition of money conservation has been

applied. Both, the strategy of storing money (Scrooge McDuck mode), as well as the
strategy of spending unlimited amounts of money (Donald Duck mode) are punished.
There in each step of the update of In the condition

Mg= 1 (20)

is imposed. The change of In results in new q; p values and the procedure is repeated
until convergence to (20) is reached (the additional delay in Ref. [10] only changes
the time scale, but not equilibrium (20)).
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For z¿ 2 money conservation involves a sum of Mg over i. To 5x the money 4ow
gn; i to agent n, extra conditions are needed. Such a condition may result from the
cooperation between agents n− 1; i connected to n. Suppose agent n sells the amount
q=

∑
i qn; i which is bought by agents n−1; i. If they do not cooperate, one agent may

choose its In−1; i such that the sum is exhausted. Then the system will collapse into a
linear chain. If they cooperate, they optimize their common utility

u(B) =
∑
i

1− �
�

Iq�n; i (21)

as function of In−1; i subject to the condition
∑
qn; i = q since the qn; i are unique

functions of the In−1; i. For �¡ 1 u(B) has a maximum for equal qn; i which implies
In−1; i is independent of i. Therefore we have condition (20) also valid for z¿ 2. In
terms of the ratios r it reads

c′(rn) = rn−1c′(rn−1) : (22)

This recursion formula for the ratios rn exhibits the stable 5xed point rn = 1, since
both c′(1) and c′′(1) are positive. The value rN−1 is arbitrary. After a transient region,
the rn for n�N are equal 1. For power laws the recursion can be solved explicitly. rn
depends only on the ratio of the exponents

�=
�
�

(23)

which can be called the relative elasticity of the utility functions, and is given by

log rn = �N−1−n log rN−1 : (24)

The same method can be applied in the buying mode. Now r′0 can be chosen arbitrarily
due to the replacement rn → 1=rn:

log r′n = �n log r′0 : (25)

Both (24) and (25) can be used to obtain In resp. I ′n for the buying mode. In the
selling mode, money is accumulated at agent N and the agents at n=0 have to borrow
money. In order to ‘recycle’ the money, one can connect n= 0 and N with a second
tree in the buying mode where agents n= 0 sell other goods q′ over this second tree
to agent N . From I0 = I ′0 and IN = I ′N the constants rN−1 and r′0 can be eliminated with
the result

In = I0

(
IN
I0

)�N−n

; (26)

I ′n = IN

(
I0
IN

)�n
: (27)

In both (24) and (25) terms �N�1 have been neglected in the exponent. The money
values IN of agent N and I0 of the agents at n = 0 are free constants. Their choice
depends on the relative weight the agents place on the utilities in the buying or selling
mode. A seller dominated market leads to IN ¿ I0. In Fig. 2, we show In and I ′n as
function of n for � = 1=4 and N = 11. In (I ′n) are constant over a wide range and



S. Bornholdt, F. Wagner / Physica A 316 (2002) 453–468 459

Fig. 2. The money values In=I0 for the selling mode (solid line) and In=I0 for the buying mode (dotted line)
as function of n. A seller dominated market with IN =I0 = 5 has been assumed. The increase of In=I0 near N
exhibits the “peanuts eEect”.

change in the last (5rst) two steps to the values imposed by the boundary conditions.
Constant money values are achieved even when they are diEerent in the selling and
buying mode. This shows that the assumption of periodic boundary conditions made
in Ref. [10] is crucial for constant money values derived from money conservation
Mg= 1 and not just minimizing the 5nite size eEects as in physical problems.
Another consequence of the recursion is the “peanuts eEect”: Consider the normalized

4ows of goods Iqn in a seller dominated market, using a power-law ansatz for utility
functions. They are constant for n�1 and increase near n= N . The ratio

IqN
Iq0

=
(
IN
I0

)1=(�−�)
(28)

may take large values, such that also u(S)N =u(B)0 becomes large. This remarkable feature
seems to have induced an unfortunate german banker to publicly call the credits given
to small customers at n=0 as “peanuts” (a statement that was not agreed upon by the
broad public). 1

Up to now, the number z−1 of neighbors n−1 adjacent to agent n did not play any
rôle given their money value In−1; i has been chosen equally. In the next chapter we
use a dynamics to reach the equilibrium condition (20) from an arbitrary initial state,
including thermal noise. The utility function for updating the In may have other maxima
besides the maximum described by (20). This we investigate in the next section.

1 Hilmar Kopper, CEO, Deutsche Bank, during a press conference in April 1994, called a loss of 25
million US$ caused by a construction consortium’s bankruptcy, “peanuts”. This was perceived as being
quite cynical, as this loss, while not threatening the bank, indeed seriously hit a large number of small
contractors.
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3. Utility function for money values

The dynamics of Ref. [10] for the money value In is based on the conservation of
money 4ux expressed by Mg=1 in the case z=2. This method has several disadvan-
tages. It is completely deterministic and does not allow for noise. More importantly, it
does not involve the agents whose utility functions are minimal for the monopolistic
equilibrium r = 1. Even a possible utility function for the dynamics would be rather
complicated, since Mg on a Cayley tree connects agent n+ 1 with agents n− 1; i cor-
responding to a next to next neighbor interaction. In addition, we encounter for z¿ 2
the diKculty that money conservation in Eq. (18) does not determine the dependence
of gn; i on i. To improve and to generalize the method of Ref. [10] the dynamics of the
money values will be based on an utility function H . Then the noise can be described
by a Boltzmann distribution. H is the sum of two parts: One part HM contains the eEect
of the money authorities, the second HA is due to the agents. The latter should involve
all agents equally. The simplest choice corresponds to a sum over all utilities uS + uB.
The key observation is that the utilities depend on variables qn; i or rn−1; i = In=In−1; i,
which are de5ned on the links x = (n; n − 1; i) of the lattice. Moreover, the sum of
utilities can be rearranged into a sum over links x

HA =
∑
agents

uS + uB =
∑
x

uA(rx) (29)

with uA given in the selling mode by

uA(z) = c(z) +
1− �
�

c′(z) : (30)

The money authority part must favor Mg(n+ 1; n; i) = 1. This establishes money con-
servation and a certain cooperation of the agents n; i to prefer equal money values
In; i. Since due to Eq. (16) Mg= 1 only involves neighboring ratios, this suggests that
one should consider the model on the dual lattice which is obtained by replacing the
links (n+ 1; n) of the Cayley tree by nodes x, and the nodes n by z − 1 dimensional
hypertetraeders. This dual lattice for z= 3 is called a cactus and is depicted in Fig. 3.
Mg(x; y) are variables de5ned on the links x; y of the dual lattice. Nonvanishing values
of Mg exist only on the links x; y depicted by the dotted lines in Fig. 3 which are
denoted by x¿y. We model HM by a sum over all links x¿y of a utility function
uM (Mg) having a maximum at Mg= 1. So we arrive at the following utility function
for the dynamics of r:

H (r) =
∑
x

uA(rx) +
∑
x¿y

uM (Mg(x; y)) : (31)

Possible equilibrium states without noise correspond to the maximum of (31). Ther-
mal noise is introduced by assuming that the equilibrium distribution w(r) for r is
Boltzmann distributed with the utility function (31)

w(r) ∼ e�TH (r) : (32)

�T corresponds to the inverse temperature and �T → ∞ would be the deterministic
limit. There exist many dynamics having (32) as equilibrium distribution. Particular
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Fig. 3. The Cayley tree and its dual lattice for z=3. On the links denoted by ∗ the Mg variables are absent.

interesting are local algorithms as the Glauber [12] dynamics or the Metropolis algo-
rithm [13]. In the latter a randomly chosen agent n selects a new I ′n thereby changing
its neighboring ratios rx to r′x. The change I ′n is accepted with probability

p= e�T min(0;MH) ; (33)

where MH = H (r′) − H (r) denotes the change in the utility function (31). It only
involves the neighboring rx which are known to the agents by the money- and goods
4ows at n.
In the following section we discuss a realization of (31) within an Ising-type model.

There has been a tradition of using Ising and similar spin models in economic theory
[14]. Here, using an Ising formulation has the advantage that probabilities (32) for the
average rx or correlations can be computed explicitly on a Caley tree [15].

4. Phase transitions in the Ising model

In the deterministic limit �T → ∞ the utility function (31) should lead to the state
rx=1, corresponding to the absolute maximum of H . However, there may be additional
local maxima with r �=1 which are frozen if the thermal noise vanishes. To study this
possibility we consider the following simpli5ed version of (31). We allow only small
deviations of r from 1 and parametrize r by a two valued function with one value 1
and the other r0 close to 1

rx = r(1+"x)=20 (34)

with an Ising spin variable "x = ±1. In addition we assume for the utility function c
a power law as in (5). The Boltzmann weight (32) is a product of site factors

G(0)("x) = e�T uA("x) (35)

and link factors

G(1)("x; "y) = e�T uM (Mg) (36)



462 S. Bornholdt, F. Wagner / Physica A 316 (2002) 453–468

with Mg derived from (19) for the buying mode and from (16) for the selling mode.
In the latter we obtain

Mg("x; "y) = r(1−�+"y−�"x)=(2(1−�))0 : (37)

For r0 close to 1, we can expand uM around 1 and obtain

G(1)("x; "y) =
(
e−K(1−�)

2
e−K�

2

e−K 1

)
"x;"y

(38)

with the money conservation constant

K =
(
−�Tu

′′
M (1)
2

)(
� ln r0
�− �

)2

: (39)

In (38) the irrelevant factor exp(�uM (1)) has been omitted. In the same way we obtain
for G(0)

G(0)("x) = e(z−1)L&"x ; 1 (40)

with the self-interest constant

L=
�T
z − 1

[uA(r0)− uA(1)] : (41)

Using (38) and (40) the Boltzmann equilibrium distribution for the dynamical variables
" can be written as

w(") =
1
Z

∏
x

G(0)("x)
∏
y¡x

G(1)("x; "y) : (42)

The normalization factor Z follows from the condition
∑

{"} w(")=1. The distribution
for a single spin w1("x)=

∑
" �="x w(") or two spins w2("x"y)=

∑
{" �="x;"y} w(") can be

calculated recursively [17]. For this purpose we introduce the tree distribution Tn("x)
of length |x| = n corresponding to the product of all factors G(0) and G(1) on a dual
tree starting at x, which is summed over all spins "y with |y|¿ |x|

Tn("x) =
1
ZT

∑
{"y;y¿x}

∏
|y|¿|x|


G(0)("y)

∏
|y′|¿|y|

G(1)("y; "y′)


 : (43)

ZT is chosen such that
∑

" T (")=1. For agent N (43) yields the equilibrium distribution
w1("N ), for agents |x|¡N the tree distribution Tn("x) is a conditional probability
related to w1("x). According to (43) a tree of length n can be expressed by trees of
length n− 1 in the following way:

Tn(") = G(0)(")
∑

"1 ;:::;"z−1

z−1∏
i=1

G(1)("; "i)Tn−1("i) : (44)

Any function T (") depending on a variable " =±1 can be parametrized as

Tn(") = an(wn&";1 + &";−1) : (45)
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Carrying out the summation in (44) we 5nd a recursion relation for an+1 and wn+1 in
terms of an and wn. For the latter this reads

wn+1 = f(wn); (46)

f(w) =
[
e−K�

2+L 1 + e(2�−1)Kw
1 + e−Kw

]z−1

(47)

which allows the recursive calculation of wn if the values wn at n= 0 are given. The
mean value of rx for the top agent x = N is related to wN by the in4ation parameter

M =
〈
ln rx
ln r0

〉
= 〈&"x;1〉T =

wN
1 + wN

: (48)

Therefore wN ∼ 0 expresses the preference for rx = 1, whereas wN�1 leads to rx ∼
r0. In physical problems 2M − 1 corresponds to the magnetization. Since our utility
function is not symmetric under " → −" the disordered state M=1=2 has no particular
meaning. Here only the fully magnetized states are interesting. In4ation parameter
M = 0 corresponds to the monopolistic state and M = 1 implies in4ation (r0¡ 1) or
de4ation (r0¿ 1). Particularly interesting are stable 5xed points wn of recursion (47).
These are solutions independent of n for n�1, especially independent of the boundary
values w0. They correspond to a homogeneous value of the in4ation parameter on the
lattice. If more than one 5xed point exists, the system can exhibit diEerent phases.
It is a particular property of the Cayley tree that the values at the boundary decide
which phase is adopted [16,17]. On a normal 5nite dimensional lattice only one phase
would be thermodynamically stable. The form of f(w) shows that the 5xed point
equation w=f(w) can have either one or two solutions satisfying the stability condition
|f′(w)|¡ 1. Depending on the values of K; L and � there can be a one-state phase
(OSP) with a unique value of M or a two-state phase (TSP) with two possible values.
In Fig. 4, we show for the numerical solution of w=f(w) with z=3 neighboring agents
the in4ation parameter M (w) as a function of K for several L values and � = 0:25.
At low L there will be a unique solution OSP in which M tends to zero for large
values K of the money conservation term in H . M increases with the self-interest L of
the agents. For suKciently large L a switch into the TSP with two possible values of
M occurs. Still the monopolistic equilibrium can be achieved for large K . The 5xed
point equation can be only solved numerically, the calculation of the phase boundaries
requires solution of quadratic equations. One 5nds that TSP only occurs if the following
two conditions are satis5ed. K has to be larger than a critical value given by

Kc =
1
�
ln

z
z − 2

(49)

and L has to be bounded by

L−(K)¡L¡L+(K) : (50)

For the following we need only the asymptotic form of L±(K) for K�1

L± = K
(
�2 +

1
z − 1

)
− 2�K

{
1
z−1 ;

1 :
(51)
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Fig. 4. The in4ation parameter M as a function of K for �=0:25 and z=3. The L values are 0 (solid line),
0.5 (dotted line), and 2.0 (dashed line). For L = 0; 0:5 the system is in the one state phase. For L = 2 and
8:5¡K¡ 20:9, the system allows two possible 5xed points (two-state phase).

For the linear chain (z = 2) discussed in Ref. [10] Kc becomes in5nite and a phase
transition to TSP cannot occur. The second condition (50) explains why a window for
the TSP phase is observed in Fig. 4. Another feature of the model is the dependence
on the elasticity �. For values of �¡�c with

�c = 1−
√
z − 2
z − 1

; (52)

the lower bound L− is always positive. For 5xed L and K → ∞ one always ends up in
the OSP in agreement with what we have seen in Fig. 4. Choosing a value �=0:6¿�c
we show in Fig. 5, the in4ation parameter M with z = 3 as function of K for various
L values. Above K0 with L = L−(K0)¿ 0 the system is always in the TSP with M
values near 0 or 1 corresponding to ratios of money values In=In−1 = 1 or r0. Even
in the deterministic limit K → ∞ the in4ationary solution cannot be avoided. The
boundaries of the TSP phase in the (K; L=K) plane are shown in Fig. 6 (�=0:25¡�c)
and Fig. 7 (� = 0:6¿�c) for z = 3. In Fig. 6, the regions where M is smaller than
0.5 (0.1) are indicated by the dotted (dashed) line, which occur outside of the TSP
region. Therefore small values of M are guaranteed in the limit of large K . In contrast
for �¿�c the region of small M lies entirely in the TSP region, as seen from Fig. 7.
The OSP can be obtained only for negative L which implies r0¡ 1 which is against
the agents interest in the selling mode. On the other side for �¿�c small values of
M can be obtained already at moderate K . The phase transition crossing the bounds
L± from OSP to TSP will be in general a 5rst-order transition, since M can change
discontinuously by MM . If one approaches the end points of TSP near Kc given by
(49), the discontinuity vanishes with a power law according

MM ∼ (K − Kc)1=2 (53)
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Fig. 5. The in4ation parameter M from Eq. (48) as function of K for �=0:6 and z=3 and various L values.
There exists a critical K(L) where the system changes from the OSP into the TSP with one value M1 ∼ 1
and one value with M0 ∼ 0.

Fig. 6. Phase diagram for � = 0:25 and z = 3 in the (L=K; K) plane. The solid lines show the critical
curves L±(K) where the system changes from the OSP to the TSP (L−(K)¡L¡L+(K). Along the dotted
(dashed) line M = 0:5(0:1) holds. Above the dotted (dashed) line M ¿ 0:5(0:1), below M ¡ 0:5(0:1).

indicating a second-order phase transition of the mean 5eld class. With increasing
number z of neighboring agents the boundaries of the TSP degenerate into straight
lines L+ = K�2 and L− = K�(�− 2) implying presence of only the TSP for L=K ¡�2.
The same method can be applied to the buying mode, where agent N buys goods via
the tree from agents at n = 0. One obtains a similar recursion formula as (47) with
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Fig. 7. Phase diagram for � = 0:6 and z = 3 in the (K; L=K) plane. The solid lines show the critical curves
L±(K)=K as in Fig. 6. Along the dashed line one solution for w leads to M = 0:1. Below this line M can
be smaller than 0.1.

value L′; K ′ and �′ obtained by the replacement

L′ =−L; K ′ = �2K and �′ = 1=� : (54)

This leads to qualitatively similar phase transitions.
The money value regulating authorities can achieve a stable economy with an in4a-

tion parameter M = 0 for given agent parameters L and � by the choice of large K .
The success depends on the value of the elasticity ratio �=�=�. Very diEerent utilities
c̃(q) and d(q) lead to ��1. In this case the system remains in the OSP and the desired
result is obtained for large K . For similar utilities c̃(q) and d(q) we expect � ∼ 1
and TSP occurs with M0 ∼ 0 and M1 ∼ 1. Which solution is obtained depends on
the boundary values of the agents at n= 0. Since their utility function (12) increases
with r0 they prefer a value r0¿ 1 leading to increasing money values from n = 0 to
N (de4ation). Additional measures as indirect taxes are required to persuade the n=0
agents to choose the solution M0. Alternatively one can close the selling tree by a
second tree in the buying mode, where the agents at n=0 sell their goods (e.g. labor)
through a tree to the top agents. In general, such a mechanism should exist in order to
recycle the money 4ow from n=0 to N in the selling mode. In this case an in4ationary
value r0¡ 1 is preferred. Combining both trees indeed allows the intermediate state
r0 = 1 to be reached, as desired in a stable economy.

5. Conclusions

In this article we considered a trading model of agents on the hierarchical net-
work of a Cayley tree, treating money values as dynamical variables. The claim of
Ref. [10] that constant money values should result independently of geometry and
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utility functions of the agents does not appear to be entirely true. Even in the case
of a linear chain, imposing money conservation at each agent we 5nd constant I ,
however, diEerent in the selling and buying mode leading to the “peanuts eEect”.
Only within the periodic boundary conditions of Ref. [10] these constants are the
same.
When agents are allowed to choose between neighbors, as for z¿ 2, additional

dynamical phenomena may occur, dependent on whether agents cooperate or not. We
include this as an optimization problem between nearest neighbors and next to near-
est neighbors which, moving the model to the dual lattice (the cactus in z = 3) still
can be described in terms of nearest neighbor interactions (now between links). An
elegant simpli5cation of this model in terms of an Ising model allows to include
noise and to explicitly solve the model. The phases of this Ising version of the model
correspond to diEerent dynamical regimes of the economy. The main result is the
existence of a TSP above a critical money conservation parameter Kc=(1=�) ln z=(z−2)
with critical curves separating the OSP from the TSP. In the TSP one observes a
5rst-order phase transition between an in4ationary phase and a phase with stable money
value. Whether such a phase transition can occur, depends on the exponents (or elas-
ticities) of the utility functions for buying or selling only. For very diEerent func-
tions the elasticity parameter � = �=� will be small and the system can remain in a
OSP with stable money value at K → ∞. If one increases � beyond a critical value
�c=1−√

(z − 2=(z − 1) the TSP is inevitable. If the utility functions are similar (� ≈ 1)
the in4ationary phase can occur also in the limit K → ∞. In contrast to the linear model
(z = 2), the equilibrium properties depend on both, the utility functions (�) and the
geometry (z).
These 5ndings are obtained by approximating the ratios of money values In+1=In by

discrete Ising variables with only two values and, less important, using power laws for
the utilities. The main motivation for these approximations is the possibility to carry
out most calculations analytically. The assumption of power laws seems to be not
too restrictive. The 5rst assumption of two valued variables can be relaxed by using
a larger number of q diEerent values for In+1=In. The resulting q-state Potts model
with only nearest neighbor interactions, for K ¿ 0 has a similar phase structure as the
Ising model [17]. The chaotic behavior observed in this model [18] can, not entirely
surprising, occur only for negative K where the authorities aim for in4ation. Therefore,
the Ising models with ferromagnetic coupling (K ¿ 0) should be representative for the
general case.
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