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The statistical properties of the World Wide Web have attracted considerable attention recently since self-
similar regimes were first observed in the scaling of its link structure. One characteristic quantity is the number
of (in-)links k that point to a particular web page. Its probability distributiBgk) shows a pronounced
power-law scaling? (k) ~k™?* that is not readily explained by standard random graph theory. Here, we recall
a simple and elegant model for scaling phenomena in general copy- and growth-processes as proposed by
Simon in 1955. When combined with an experimental measurement of network growth in the World Wide
Web, this classical model is able to model the in-link dynamics and predicts the scaling expen2iit in
accordance with observation.
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Recently, a broad range of scaling phenomena has begiied to the World Wide Web, they fail to predict a scaling
observed in natural and artificial network structures, motivatexponent that agrees with the observed value. They calculate
ing new research on the dynamics of complex networks. Onan exponent ofy=3 [2,7] which is too steep, or arrive at a
interesting example of a complex network is the World Widerange of ¥ y<o depending on a free parametgs,6].

Web (WWW), which forms a directed graph consisting of Similarly, an extended model by Albert and Barsii8] pre-
hypertext documentgnodeg and hyperlinks(edge$. The  dicts a range of exponents between 2 anddepending on
properties of the WWW are of particular interest to newparameters in the model. While these models only consider
methods of search and retrieval of information. Search enthe distributions of in-linkgand in this Rapid Communica-
gines, for example, often face the problem of selecting okion we will focus only on such modelsthere are also ex-
ranking the results of a keyword search from a vast numbefended versions that can accommodate more general sce-
of hits. Many current search engines use simple text matcharios, including modeling the generation of out-link
ing, though more advanced approaches use the specific linkistributions. However, such advanced models for the com-
structure of the WWW[1]. One important quantity in this pined distributions of in-links and out-links arrive at the
respect is the numbdrof links that point to a particular web same range for the exponent of the in-link distribution
page(in-links). Its probability distributionP(k) as observed [9-13. Still, their exponent depends on at least one free
at present in the internet exhibits a pronounced power-laparameter and, as the models above, they fail to explicitly
scaling[2,3] predict the WWW in-link exponent without further tuning.
One approach to an independent prediction of this exponent
P(k)ock™7. (1) from experimental data is described below. When applying
the above models to the WWW, a second problem emerges

This remarkable feature is not readily explained by standardfom the preferential linking assumption: The way it is de-
random graph theorf] which for random networks predicts fined in these models it correlates age and connectivity of
an exponential decay of the connectivity distribution, sup-nodes. However, this is not observed in the link structure of
pressing the occurrence of highly connected vertices. Howthe WWW([5].
ever, such highly connected nodes are frequently seen in In the following, we address the problem of WWW
measurements and form the power-law tailRgk). growth by sketching a simple stochastic process for adding
Recent network models exp|ain such scale-free link disneW nodes and In-|lnk§, based on a CIaSS|F:aI, however in this
tributions as a result of network growth processes. Thes€ontext, almost unnoticed model for scaling phenomena. It
models are generally based @i constant network growth W|II_aIIow us to calculate the exponent of the |n-I|n!< distri-
and (i) the preferential addition of links to nodes that al- bution y for the WWW from experimental data of internet
ready have a large number of links. For example Huberma@rowth, and further solves the age correlation problem ex-
and Adamid5,6] assume that the number of new links point- hibited by the approaches mentioned above. The main idea
ing to a node in one time step is a random fraction of theh@s been formulated in the well-known model for scaling
number of links already pointing to it. In the approach of Phenomena in copy- and growth-processes by Simon in 1955
Barabai et al.[2,7] the probability of connecting a new link [14]- Originally it was proposed to explain the scaling behav-
to a node is directly proportional to the number of links thatior observed in distributions of word frequencies in texts or
node already has. Both models are quite successful in exity population figuregZipf's law [15]). It models the dy-
plaining the emergence of power law statistics in the linkhamics of a system of elements with associated counters.
structure of growing random networks. However, when ap]Neéw elements are constantly added while the counters are
incremented at a rate depending on their current values. In
Ref. [14], the model is formulated in terms of words in a
*Email address: bornholdt@theo-physik.uni-kiel.de text. In each iteration stefpthe text grows by one word. The
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(t+1)st word will be either a new on@vith probability «) t

or an old word(with probability 1— «) that has already ap- > kf(k,t)=t, (6)

peared in the preceding text. Old words are copied from the k=t

existing text, i.e., if the {+1)st word is an old word, the ;ne obtains

probability that it has appearddtimes is proportional to the

total number of occurrences of all words that have appeared 11—«

exactly k times. This assumption is weaker than supposing K)=——- ()

that the probability of thet( 1)st word being a particular

word which already occurreklitimes is proportional t&. In - The stationary solution of this process given by Simon is

order to model network growth consider a network with

nodes with connectivitiek;, i=1, ... n. The nodes are di- P(k)=AB(k,p+1) (8)

vided into connectivity classdk]. A class[k] is defined as ) _

the set containing all nodes with identical connectikitithe ~ With the constant#, p:=1/(1-«a) and the beta function

cardinality of such a clagx], i.e., the number of all nodes 1 P(OT(p+1)

with connectivityk, is denoted byf (k). For the growth pro- B(k,p+ 1):J A1\ )PdA = —p_

cess, the following steps are iterated: 0 I'(k+p+1)
(i) With probability « add a new node and attach a linkto ) )

it from a node Chosen in an arbitrary Way_ Th|S d|Str|but|On apprOXImateS a pOWer Iﬂk)(xki’/ W|th
(i) Else add one link from an arbitrary node to a npgé ~ €xponent

class[k] chosen with probability

C)

1
=1+-—. 1
k() Y T (10
Py=—"" 2 o .
E if (i) For finite iteration timeg the power law will hold for &k
i <t influenced by transient effects depending on initial con-
ditions. The only free parameter of the modereflects the
Note that it is not specified how to choose the ngde relative excess growth of number of nodes versus number of
which will receive the link, from clas$k]. Also, it is not  links. In general small values af, therefore, predict scaling
specified where the links originate from. Therefore, thisexponents neay~2.
model does not include modeling out-degree statistics as Given that, during network growth, the number of nodes
other models, e.g., Reff11-13. On the other hand, it can increases, the real time intervAlr associated with each it-
easily accommodate extensions that explicitly model the stagration steg should also change,
tistics of out-links(e.g., by implementing an additional prob-
ability, as in Refs[11,17)). This does not affect the main AT:i (11)
result for the in-link distribution obtained here. The only cn
parameter of the model that in such a case couples to the
additional process assigning out-links to nodes is the ratio ofvith the total number of nodes==!_,f(i,t) and a constant

node versus link creation rates c for time units. The mean increase in the number of nodes in
Following Ref.[14], the above process is described by theeach step isAn=a andAt=1 for the number of links, re-
evolution equations spectively, leading to exponential growth of both quantities
f(kt+1) = f(k,) =K(O[ (k=D f (k=10 =kf(k,t)] dn 20 an, (12
(3 dr Ar
fork=2,...t+1 and dtNAt_ - 13
dTNAT_C(a No). (13
f(Lt+1)—f(Lt)=a—K(t)f(11), (4)

wheren, denotes the initial number of nodes. Let us apply
wheref(k,t) is the expectation value of the number of nodesthis process to modeling the evolution of the WWW, identi-
in class[k] at iteration step and whereK (t) is a proportion-  fying nodes with web pages. Théi) describes the creation
ality factor. In order to evaluatk(t) one uses the fact that Of a new web page, whereas(in) a new link to an old page
K(t)kf(k,t) is the probability that thet@1)st link is re- is inserted in some other page. It is natural to assune) in

ceived by a node of clagk]. With the probability for(ii) that at the same time a new page is created there will be a
new reference to it from an existing pageg., from a direc-

t tory page or from another page of the same project
E K(kf(k,t)=1—a (5) Data from two recent comprehensive AltaVista craj@k
k=1 provide an estimate fo# in the present internet. These two
measurements counted 203 million pages and 1466 million
and the number of links 4t links in May 1999, and 271 million pages and 2130 million
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links in October 1999. In the model, in each iteration stepclasses of nodes with identical connectivities. This allows for

one link is created. Hence, the probability for adding a newdifferent growth rates among class members, leaving just one

web page is estimated from the ratio of the observed increadece parameter.

in page counts and link counts to With respect to the WWW, Simon’s more general defini-
tion of “preferential linking” corresponds to separating the
linking process into two natural parts: First, the process of

a= @20-10- (14 getting to know a page, and second, the decision whether to

link this page or not. In recently discussed models both steps

The subsequent prediction of Simon’s model for the expo—ocCur at once, by directly linking a page with a probability

nent of the link distribution isy=2.1 comparing well to proportional to its popularity. In reality, however, only the
current experimental resultg=2.1= 0.1 [2] and y=2.09 process of getting to know a page necessarily depends on

[3]. Thus, we obtain an independent prediction of the Sca”n@opularlty. Whether this page ends up being linked, in prac-

exponenty. based on the measurement of the inde endenéce depends on many other variables as, e.g., contents, age,
ponenty, X ) pe tc. This more general picture restricts the influence of popu-
guantity «, the ratio of the creation rates of pages and links

To compare with recently proposed models it may be in_Iarlty to the only necessary part in the dynamics of linking.

teresting to note that the model by Baraband Albert[2] This is what Simon formulates, resulting in a quite general

. ) scenario of linking dynamics. In particular, the specific cri-
can be mapped to the subclags=1/2 of Simon’s model - : :
(leading to a scaling exponent=3). Of the extended mod- teria that we apply to decide whether to link a page, do not at

o Il influence the exponent of the connectivity distribution.
els noted above the closest connection is to the model P y

Dorogovtsevet al. [10], who consider a free parameter “ini he recent models’ preferential linking discussed above, is
- : ) ’ " contained in this picture as a special case. To be specific, the
tial attractiveness of a node” that can be relatedxtoAn- P P P

o first step in Simon'’s linking process is described by Ej:
o_ther remarkable point |s_tha_t these mo__dels US€ a MOre SpPfyq probability of getting to know a page depends on the
cifically defined preferential linking thafii). They add one number of links pointing to it. So, one encounters a page of
link from an arbitrary node to a nodewith a probability !

ional to th ity of th € q class[k] with a probability proportional to the number of
proportional to the connectivity of the receiving node links received by the whole class. Then, one decides whether

to link or not. This means, one chooses a page of dlaks

P — Ki (15) with a probability influenced by “preferences” of the linking
J 2 K node, i.e., a probabilit(i— j|[k]) that node directs a link
=~ to nodej e[ k] given thati will connect to a node of class

[k]. A simple example may illustrate the generality of this
Note that Eq(15) implies Eq.(2), whereas the reverse is not approach. Consider the following modification @f): First,
a(15) imp a.2) wigdei will connect to a member of clagk] with probability

true. Otherwise these models are based on the same he ol b | h h link
assumptions of growth and preferential linking as used herd2)- Among the class members, let us then choose to lin

From this viewpoint, it is interesting to reconsider a recent2¢c0rding to a completely different criterion, e.g., link to the
discussion of these models. Baraband Albert mention that Youngest nodeas this may be a trend setting page for ex-
this type of preferential linking15) implies a “rich-get-  amPIe, i-e.,

richer” behavior of individual node$2]. In other words, a

node already r_eceiving many Iinkls.WiII grow much faSterPij=P[k,]P(i—>j|[kj])

than a node with smaller connectivity. Adamic and Huber- !

man point out that this “rich-get-richer” phenomenon corre- k;f(k;)

lates the age and connectivity of nodés This, however, is — _
2 V() if j youngest member ofk;],

disproven by the data they present. One possible solution — (17)
they suggest is to add individual growth rates to each node v
which could solve this correlation problem. In response, 0 else.

Barabai et al. [16] show how to introduce such intrinsic
growth ratess; to each node, thereby modifying preferen-
tial linking (15) to As the second step, the specific choice of a node from class
[k], is purposedly left unspecified in Simon’s model, Eq.
(17) leads to the same evolution equatidBs4) and, there-
Pj= . (16)  fore, to the same power law for the degree distributgR).
E 7iki In other words, a node’s “bounded knowledge” of the whole
i network, in terms of the probability of knowing a pa( is
sufficient for the emergence of a power-law connectivity dis-
While this solves the correlation problem, the price to pay istribution, independent of specific preferences in the actual
a large number of free parameters in the extended model. Amking process within the set of known pages.
shown above, a simple solution to this problem is already In summary, Simon’'s classical scaling model has been
implicit in Simon’s model: Linking is guided by Eq2) in-  reformulated to model an interesting aspect of WWW
stead of Eqs(15) or (16), considering not single nodes but growth, predicting a characteristic power law for the distri-

;K]
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bution of in-links. The one free parameterof this model recent models of WWW growth are closely related to Si-
has been determined from recent measurements of weahon’s original model. In contrast to these, Simon defines a
growth and the scaling exponent calculatedyte2.1. This  more general process of linking that does not correlate age
estimate agrees well with direct experimental measuremenend connectivity, which presents a problem in other recent
and is robust in the case of small changegrofVe find that models as this effect is not observed in real data.
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