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Coevolution of two coupled quasispecies is studied, motivated by the competition between viral evolu-
tion and adapting immune response. In this coadaptive model, besides the classical error catastrophe for
high virus mutation rates, a second “adaptation” catastrophe occurs, when virus mutation rates are too
small to escape immune attack. Maximizing both regimes of viral error catastrophes is a possible strat-
egy for an optimal immune response, reducing the range of allowed viral mutation rates to a minimum.
From this requirement, one obtains constraints on B-cell mutation rates and receptor lengths, yielding an
estimate of somatic hypermutation rates in the germinal center in accordance with observation.
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During the past 30 years, the concept of quasispecies
[1,2] has developed into a valuable tool for modeling key
features of molecular and viral evolution. In its most gen-
eral form it describes sequence evolution under error-prone
replication whose individual rate is given by a fitness func-
tion in sequence space. Although it is known that the topol-
ogy of a subregion in sequence space with extraordinary
high replicative power affects the selective advantage of its
sequences and the robustness of the subsystem [3,4], es-
sential features of the model can already be studied in the
presence of a simple peaked fitness function, resulting in
the formation of a central master sequence surrounded by
a cloud of mutant sequences. A prominent feature of such
systems is the occurrence of an error catastrophe, a sud-
den breakdown of stability when mutation rates get large.
Recent developments of quasispecies models include their
formulation within a statistical mechanics framework and
a characterization of the error catastrophe as a phase tran-
sition [5–9].

While traditionally defined on static fitness landscapes,
the concept of quasispecies recently has been extended to
nonstationary fitness environments [10]. This has impor-
tant applications, as viruses usually face quickly chang-
ing environments in the tight and temporal niches of their
hosts. This new approach allows for studies of the adaptive
response of a quasispecies to changing external conditions.
This has been studied for different choices of time depen-
dent fitness functions [10,11].

Here, we further extend this approach and study a virus
in the environment of an adaptive immune system taking
a further step beyond a simple time dependent viral fitness
function. An interesting observation is that motifs of im-
mune receptors often form something very similar to quasi-
species: The presence of a viral epitope motif induces the
proliferation of the corresponding immune receptor se-
quence. This “master” sequence is surrounded by a cloud
of closely related receptor sequences that emerge from
somatic hypermutation in the germinal centers [12,13].
Interpreting the conditions that lead to proliferation of
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specific immune receptors as their fitness, we can formally
consider the B-cell population induced by a specific viral
epitope as a quasispecies. In this paper we therefore study
the coevolution of two asymmetrically coupled quasi-
species under competition. While the immune quasispecies
is strongly attracted by the virus, the viral quasispecies
is driven away from its current master sequence by the
immune system. This results in a migration through se-
quence space as observed in many infectious diseases as in
HIV [14,15]. In the following, let us first define the model
in detail. Then, dynamical regimes and stability bounds
are discussed which occur as a result of the selective
forces acting on both sides of the system. Finally, from the
perspective of an optimal immune response, a relationship
between receptor size and mutability is derived.

Consider a model with two quasispecies of genetic se-
quences, one of them coding for a virus and the second
one coding for the variable part of an immune receptor.
Sequence lengths are ny and nis, respectively, with bases
taken from an alphabet of length l � 4. Mutation rates are
quantified by the copy fidelities per base qy, qis , 1. The
time evolution of the two distributions, the concentration
zk�t� of viral sequence k, as well as the concentration of
immune cells yk�t�, representing receptor coding sequence
k, is described by two sets of coupled differential equa-
tions of the type introduced by Eigen [1]

�yk �
X

l

Wis
kl A�zl�yl 2 fyk , (1)

�zk �
X

l

�Wy
klBl 2 dklC� yl��zl , (2)

Wi
kl �

q
n2d�k,l�
i �1 2 qi�d�k,l�

�l 2 1�d�k,l� ,

i [ �is, y�; k, l [ �1, . . . , ln� .
(3)

Locally in sequence space, we assume a simple one-to-one
map between viral sequence and the sequence coding for
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the immune receptor that maximally fits the viral epi-
tope (within the local neighborhood of mutated receptors).
For simplicity, both sequences share the same subscript
l in the above formulation. Therefore, A�zl� denotes the
growth rate of the B-cell clone corresponding to receptor
sequence l and depends on the concentration of its com-
plementary viral sequence zl. The viral replication rate
is Bl, and its decay rate C� yl�, which depends on the
associated immune cell concentration. For viral, as well
as immune receptor evolution, a transition probability Wi

kl
from a sequence l to sequence k by mutation is assumed,
depending on the respective copy fidelity qi , sequence
length ni, and the Hamming distance of the two sequences
d�k, l�. For simplicity let us assume nis � ny � n with
the comparable complexity of viral epitopes and corre-
sponding immune receptors in mind. Equation (1) models
the relative concentrations of immune receptor coding se-
quences, with constant overall population size normalized
by f �

P
l A�zl�yl . The viral population (2), on the other

hand, does not reach a constant population size, as the im-
mune system usually works efficiently enough for the virus
not to enter the regime of saturation. Therefore, absolute
concentration is considered here and is the adequate quan-
tity to quantify viral feedback to immune cell proliferation.

As viral existence in sequence space often is restricted
to narrow niches with high fitness, let us assume a fitness
landscape with a single peak with Bl � sy ¿ Bmfil �
hy . This consequently neglects viral antigenic diversity
but may be justified as a null hypothesis, assuming that
there is generally a dominant strain among viable strains.
This master sequence moves as a result of immune system
pressure. Vice versa, as the immune response represents
a very specific answer to a pathogen, let us also model
the immune fitness landscape to have a single peak, cor-
responding to the receptor matching the current antigenic
master sequence. This simplifies the coevolution model to
a few discrete alternatives: A�zl� � sis if and only if zl

represents the concentration of the viral master sequence,
otherwise A�zl� � his ø sis. Analogously, C� yl� � d

if and only if yl represents the dominant immune recep-
tor’s concentration, otherwise C� yl� � 0. This makes the
complicated couplings in the above equations tractable and
allows us to neglect mutational backflow to the respective
master sequences. Let us first write down simplified equa-
tions that apply to both quasispecies (1) and (2). For this
purpose we use non-normalized concentrations [16,17] for
quasispecies (1) also, and neglect the decay term in (2)
for the moment. Then, each of the two quasispecies can
be written in terms of the concentrations of a master se-
quence x0 and of an arbitrary sequence of the first error
class G1x1.

�x0�t� � qnsx0�t� , (4)

�x1�t� �
1 2 q
l 2 1

qn21sx0�t� 1 qnhx1�t� . (5)
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The interaction between the two systems has to be speci-
fied by extra rules on the basis of the above definition of
growth and decay rates. To keep the model as simple as
possible, the decay rate d affects only the viral sequence
matching the dominant immune receptor. If this happens
to coincide with the viral master sequence, the viral fitness
peak will effectively move. Depending on its strength, the
former fitness peak eventually will drop below the environ-
mental growth rate. In this situation, sequences in the sup-
pressed viral master sequence’s neighborhood will now be
selected with respect to positive deviations in growth rate
from their neighbors representing an effective movement
of the fitness peak. To be specific, the dynamical rules of
this process are defined as follows: (1) Once the immune
system imposes a decay rate d . 0 on the viral master se-
quence (so far stabilized at the viral fitness peak), the nar-
row niche of the virus is assumed to move to an arbitrary
sequence of the first error class. (2) The viral quasispecies
adapts to the new fitness peak on a time scale ty given by
the dynamical equations above. (3) The fitness peak of the
immune quasispecies is adjusted to the new maximum of
the viral distribution. (4) The immune system adapts to the
new fitness peak on a second time scale tis determined as
above.

These steps are then iterated. While this is a strongly
simplified picture of the coevolutionary dynamics of two
coupled quasispecies, it allows a simple estimate of the
dynamical regimes of two coupled sets of equations of
type (4) and (5). Each of the fitness peaks is adjusted once
during each cycle of duration t � ty 1 tis (in steps 1 and
3, respectively). This allows us to follow the arguments
of Nilsson and Snoad [10] to determine the growth of
the respective future master sequences over a full cycle
t relative to the environmental growth eht as a criterion
for the quasispecies’ survival [10]

k �
1

eht

x1�t�
x0�0�

�
�e�qns2h�t 2 e�qnh2h�t� �1 2 q�s

�l 2 1� �s 2 h�q
.

(6)
This expression is applied to each one of the two quasi-
species (with the respective variables), defined over the
full interval t � ty 1 tis between two adjustments of its
fitness peak. For a relative growth coefficient k . 1 a
species will survive and for k # 1 it will get extinct.

Now consider a coupled system of viral and immune
quasispecies where the immune part exerts a selective pres-
sure on the virus in the form of a nonvanishing kill or decay
rate d. To estimate the migration time scale of the virus
ty , let us iterate the model for a full cycle t starting at
the moment of the move of the fitness peak at t � 0. The
relative size of the old and new master sequence peaks
is then subsequently determined for another time interval
ty . Let us assume x1�0� � 0 since the new error class one
sequence members are mainly recruited from the former,
weakly populated error class two. The time scale ty is
given by the waiting time until the new master sequence
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population exceeds the old one:

e�qn
yhy2d�tyx0�t� �

!
eqn

ysyty x1�t� ) e�qn
yhy2d�tyeqn

ysyt � eqn
ysyty

�eqn
ysyt 2 eqn

y hyt� �1 2 qy�sy

�l 2 1� �sy 2 hy�qy

. (7)
Mutational flows between the involved sequences can be
neglected due to the small growth of the former master
sequence and the small size of the initial new master se-
quence population. Assuming sy ¿ hy and qy � 1 the
viral adaptation time scale can be estimated to

ty � 2
ln�12qy

l21 �
qn

y�sy 2 hy� 1 d
. (8)

Similarly, for the migration time for the immune quasi-
species tis we obtain

tis � 2
ln� 12qis

l21 �
qn

is�sis 2 his�
. (9)

Both, ty as well as tis exhibit a local minimum at specific
values of their copy fidelities qy and qis, mainly deter-
mined by the balance between the requirement of a suffi-
ciently large initial population for the formation of a future
master sequence and sufficiently low mutational losses of
the new master sequence. Inserting t into the expressions
for viral stability ky and immune stability kis according to
(6), one obtains estimates for the regimes of viral and im-
mune (co)existence. Because of the resulting intricate de-
pendence of ky on qy we were not able to derive a simple
expression for an optimal mutation rate within the viral
regime of existence as done in [10], to discuss its scaling
behavior in dependence of genome length in comparison
with former results [18,19].

Nonetheless we can get some qualitative information
from Fig. 1 that shows viral and immunological regimes of
(co)existence in terms of the respective mutation rates m �
1 2 q. The classical error catastrophe occurs at lower
mutation rates in comparison to the static error threshold

mstat
err � 1 2 � h

s �1�n � 0.045 �
ln� s

h
�

n (cf. [1]). This effect
is due to additional mutational losses by migration and be-
comes large for small t. In addition, Fig. 1 shows dif-
ferent limiting behaviors for ky and kis for my ! 0 and
mis ! 0, respectively, which can be summarized as

ky

my!0
! 0 ,

kis
mis!0

� e�sis2his�ty .

For the viral quasispecies one observes a second error
(“adaptability”) catastrophe at small viral mutation rates,
because a minimum viral mutation rate is needed to escape
the decay rate d induced by the immune response at the
viral master sequence.

The ky surface in the my-mis plane, whose ky � 1 con-
tour lines are shown among others in Fig. 1, is dominated
by a saddle point: ky�my� exhibits a local maximum while
ky�mis� shows a local minimum. An optimal strategy for
viral suppression is, therefore, to adjust the mutation rate
mis of the immune quasispecies such that ky operates in
068104-3
its valley, with maximum regions of error catastrophes on
both sides. One obtains the condition

≠ky

≠mis
�
!

0 , (10)

which can be written as

mis 2 1 1 nismis ln

µ
mis

l 2 1

∂
� 0 . (11)

This mutation rate minimizes the regime of possible ex-
istence of the viral quasispecies in Fig. 1. Depending on
the involved viral and immune growth rates, this range of
allowed viral mutation rates my may vary (and even van-
ish for some values). Note that the relationship between
optimal mis and nis is independent of sy�is, hy�is, and d.
It depends only weakly on the length of the alphabet l,
which however is fixed here.

How does this compare with experimental results? Let
us focus on B cells and their antibodies. Each antibody has
at least two antigen receptors located in the variable regions
of the antibody’s heavy and light chains, each of which
contains about 110 amino acids. Each receptor is coded by
approximately 660 nucleotides. Antigen detection takes
place in 6 subregions, the complementarity determining
regions (CDRs) that represent 20%–30% of the antibody’s
variable(V ) regions [20,21]. In the course of the primary
immune response one observes somatic hypermutation in

FIG. 1. Regimes of viral and immune quasispecies (co)exis-
tence, with 1�2 denoting stable/unstable regions of the re-
spective quasispecies in dependence on mutation rates my and
mis. Parameters are sy � sis � 10, hy � his � 1, d � 200,
ny � nis � 50, and l � 4. A large value of d is chosen to get
a good qualitative view of the system’s behavior.
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FIG. 2. Predicted mutation rates vs receptor coding lengths for
an optimal immune response (l � 4, sy�is, hy�is , d arbitrary),
in comparison to observed rates of somatic hypermutation and
observed CDR coding lengths.

the recombined V-region genes, with mutational hot spots
at the CDRs, resulting in an enhanced affinity towards
the invading antigen [12,22,23]. Observed mutation rates
are in the range of 1024 1023 mutations per base pair
per generation [24–26]. Mutation rates in the CDRs are
approximately twice to tenfold higher than those found in
the entire V region [25,27]. These observations are quite
universal to adaptive immune systems that are common to
jawed vertebrates differing only in effectivity of selection
due to varying stages of germinal centers’ expression [28].

As Fig. 2 shows, the model prediction agrees well with
the observed somatic hypermutation rates and CDR recep-
tor lengths.

To summarize, the dynamics of the coevolution of two
coupled quasispecies has been studied. In particular, this
model was formulated to provide a simple toy model for
the coadaptive system of viral evolution and immune adap-
tation. The model characterizes the different regimes of
(co)existence of viral and immune quasispecies and pre-
dicts the correct range of somatic mutation rates in accor-
dance with observation. Possible extensions of this work
are numerous, as this is only a first account of basic prin-
ciples of coevolving quasispecies. Analytical approaches
beyond the simple approximation presented here, as well as
numerical extensions, may provide a more accurate picture
of the dynamics and further possibilities to relate to bio-
logical data. Further applications include modeling HIV
dynamics, e.g., by adding an overall decay rate represent-
ing the HIV-induced loss of CD41 T cells.
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