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We suggest simulating evolution of complex organisms using a model constrained solely by the require-
ment of robustness in its expression patterns. This scenario is illustrated by evolving discrete logical
networks with epigenetic properties. Evidence for dynamical features in the evolved networks is found
that can be related to biological observables.
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1. INTRODUCTION

A common concept in evolution is ¢tness and ¢tness land-
scapes (Wright 1982); often evolution is viewed as hill
climbing, possibly with jumps between ¢tness maxima
(Lande 1985; Newman et al. 1985). However, ¢tness land-
scapes implicitly assume that ¢tness varies over a well-
de¢ned metric in genomic space. This would be the case
if single point mutations were a driving force. However,
signi¢cant genome rearrangements have already been
observed in the rather brief real-time evolution experi-
ments of Escherichia coli cultures of Papadopoulos et al.
(1999). Genomic rearrangements short-circuit the simple
metric generated by one-point mutations, usually under-
lying the intuition of evolution on landscapes. As a conse-
quence, the combinatorial distance for moving from a
genome A to a genome B may easily be di¡erent from the
distance of the opposite move, most simply exempli¢ed
by deletions and insertions. Thus, although ¢tness land-
scapes have a meaning for the small-scale adjustments
associated with ¢ne-tuning of binding constants, it is an
unjusti¢ed concept for evolutionary changes on the scale
of speciation events.

In this paper, we should like to draw a distinction
between molecular neutrality, as suggested by Kimura
(1983), and the possibility of neutrality on the scale of
genetic regulation networks which is discussed here.
Molecular neutrality deals with single base-pair muta-
tions that do not in£uence the conformation and function
of single molecules. Genetic network neutrality deals with
architectural changes in the regulatory genetic network
that do not in£uence its output pattern substantially.
Dynamically, the one-point mutations in proteins or RNA
(Gruener et al. 1996a,b; Reidys et al. 1997; Schuster 1997)
proceed slowly, with a rate that re£ects the probability
that a mutation does not change molecular properties
(Kimura 1983). We here similarly assume that genetic
network rearrangement proceeds stochastically, with a
rate determined by the probability that the networks do
not change their expression pattern substantially.
However, in contrast to molecular neutrality and random
walks on neutral plateaux on the energy landscapes as
studied by Gruener et al. (1996a,b), Reidys et al. (1997) and
Schuster (1997), we evolve the network without any
explicit energy function. Thus we do not have any absolute

energy or ¢tness of our evolving network. This mimics the
fact that the functional dynamics of genetic regulatory
networks do not exclusively depend on their architecture.
Often, other factors from the cellular environment (and
beyond) interact with gene regulation. These factors can
change on a much faster time-scale than the architecture
of genetic networks and may be viewed as additional
boundary conditions varying in time.

Abandoning ¢tness landscapes, we here instead discuss
the possibility that evolution progresses through a process
where genotypes and phenotypes subsequently set the
frame at which the other may change. Of particular
relevance for this view of evolution is the fact that one
often observes di¡erent phenotypes for the same
genotype. This viewpoint is in part supported by cell
di¡erentiation within one organism, together with
epigenetics and the large class of organisms which
undergo metamorphosis and thus exist in several pheno-
types for the same genotype. A mechanism for evolution
may thus be exposure of the same species to di¡erent
environments. The species then faces a variable selection
criterion, with the consequence that what is pheno-
typically neutral at some instant may not be pheno-
typically neutral at later instants. Thus, in contrast to the
molecular neutrality where many RNA genotypes have
the same phenotype (Gruener et al. 1996a,b; Reidys et al.
1997; Schuster 1997), we here use that, on higher level
organization, more than one phenotype for each genotype
may occur.

In general, evolutionary models with genotype^
phenotype ambiguity are currently discussed as the basis
of sympatric speciation events, where new species can
emerge without the strict need for geographical separa-
tion (see Dieckmann & Doeberli (1999) and references
cited therein). Proposed mechanisms range from the
divergence of coexisting phenotypes (Kaneko & Yomo
1999) to the evolution of assortative mating conditional
on a selectively neutral marker (Dieckmann & Doeberli
1999). In the present paper we do not discuss a full model
of sympatric speciation, because we restrict ourselves to
following a single germline. However, it is well
conceivable that epigenetics on the level of genetic
networks could contribute to sympatric speciation.

Here we consider a class of systems that exhibits
epigenetics, which is represented by the logical networks,
where nodes in the network take values on or o¡, as a
function of the output of other speci¢ed nodes. This has

Proc. R. Soc. Lond. B (2000) 267, 2281^2286 2281 © 2000 The Royal Society
Received 10 May 2000 Accepted 21 August 2000

doi 10.1098/rspb.2000.1280

*Author for correspondence (bornhol@theo-physik.uni-kiel.de).



been suggested to model the regulatory gene circuits
(Kau¡man 1969, 1990; Somogyi & Sniegoski 1996;
Thie¡ry & Thomas 1998), where speci¢c genes may or
may not be expressed as a function of other genes. In
terms of these models it is natural to de¢ne genotypes in
the form of the topology and rules of the nodes in the
network. The phenotypes are similarly associated with the
dynamical expression patterns of the network.

To de¢ne the rules under which phenotypes and geno-
types set the frame for each other’s development, a model
for evolution should ful¢ll the requirement of robustness.
Robustness is de¢ned as the ability to function in the face
of substantial change in the components (Savageau 1971;
Hartwell 1997; Alon et al. 1999; Little et al. 1999). Robust-
ness is an important ingredient in simple molecular
networks and probably also an important feature of gene
regulation on both a small and large scale. In terms of
logical networks, robustness is implemented by
constraining subsequent networks to have similar expres-
sion patterns.

This paper is organized as follows: ¢rst, we discuss
dynamics on logical networks and numerically review the
basic properties of attractors of random threshold
networks and Boolean networks. Then we propose a
minimal evolution model and investigate its statistical
and structural implications for the evolved networks.
Finally, biological implications and possible experimental
approaches to the dynamics of real genetic networks are
discussed.

2. DYNAMICS ON LOGICAL NETWORKS

Let us ¢rst discuss two prototype networks that exhibit
epigenetics, Boolean networks (Kau¡man 1969, 1990;
Somogyi & Sniegoski 1996) and threshold networks
(Ku« rten 1988a,b). These are both networks of logical
functions and share similar dynamical properties. Here
we brie£y describe their de¢nition and dynamical
features. In both networks each node takes one of two
discrete values, §1, that at each time-step is a discrete
function of the value of some ¢xed set of other nodes
speci¢ed by a wiring diagram. The links that provide
input to node i are denoted by fwijg with wij ˆ §1. A
crucial structural parameter of the network so de¢ned is
its connectivity K, which we will de¢ne as the average
number of incoming (non-zero) weights per node. The
updating rule for the dynamics on the network remains to
be speci¢ed. For the threshold network case it is additive:

¼i ˆ 1 if
j2fwig

wij¼j50, (1)

¼i ˆ ¡1 if
j2fwig

wij¼j50. (2)

In the Boolean network case the updating is a general
Boolean function of the input variable

¼i ˆ B(¼j -values which provide input to i): (3)

Thus, the threshold networks form a hugely restricted set
of the Boolean networks. Boolean networks include all
nonlinear combinations of input nodes, including func-
tions such as the èxclusive-OR’. The threshold networks

are well known as a type of neural network, where a
certain number of input ¢rings are necessary to induce
¢ring in a given neuron (Ku« rten 1988a,b). Boolean
networks are mostly discussed in connection with genetic
networks, because in principle the speci¢city of protein
binding enables the implementation of more detailed
logical functions.

The basic property of logical networks is a dynamics of
the state vector f¼ig characterized by transients that lead
to subsequent attractors. The attractor length depends on
the topology of the network. Below a critical connectivity,
Kc º 2 (Kau¡man 1969, 1990; Derrida & Pomeau 1986),
the network decouples into many disconnected regions,
i.e. the corresponding genome expression would become
modular, with essentially independent gene activity.
Above Kc any local damage will initiate an avalanche of
activity that may propagate throughout most of the
system. For any K above Kc the attractor period diverges
exponentially with respect to system size N, and in some
interval above Kc the period length also increases nearly
exponentially with connectivity K (Bastola & Parisi
1996). Note that in Boolean networks the critical connec-
tivity (or coordination number) equals two, compared to
unity in usual random graphs (Erdo« s & Renyi 1960;
Bollobas 1985), due to the Boolean logic. Criticality
means that a change at a node in the network spreads
marginally throughout the network. This picture is parti-
cularly simple for Boolean networks, where any change
has probability 0.5 to propagate along any link for
random Boolean rules, so that an average of two links
have to leave each node to create the critical state. For
neural threshold networks similar arguments apply.

3. STRUCTURAL EVOLUTION OF NETWORKS

Dynamics may occur on networks as de¢ned by the
rule above, but at least as important is the dynamics of
network topology (Bornholdt & Sneppen 1998; Paczuski
et al. 2000; Bornholdt & Rohlf 2000). In terms of network
topology, an evolution means a change in the wiring
fwijg! fw 0

ijg that takes place on a much slower time-scale
than the f¼jg updating. The evolution of such networks
represents the extended degree of genetic network engi-
neering that seems to be needed to account for the large
di¡erences in the structure of species genomes (Shapiro
1998), given the slow and steady speed of single protein
evolution (Kimura 1983). The model will extend neutral
evolution on the molecular scale (Kimura 1983) to
neutral evolution on the regulatory level, and demon-
strate that neutrality in itself enforces constraints on the
evolved graphs.

We have, in an earlier publication, proposed to evolve
Boolean networks with the sole constraint of continuity in
expression pattern (Bornholdt & Sneppen 1998). Here we
simplify this model by simple damage spreading testing:

The model evolves a new single network from an old
network by accepting rewiring mutations with a rate
determined by expression overlap.

This is a minimal constraint scenario with no outside
¢tness imposed. Further, the model tends to select for
networks which have high overlap with neighbour mutant
networks, thus securing robustness.
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Now let us formulate an operational version of the
evolution in terms of threshold networks, because these
have comparable structural and statistical features to the
Boolean ones (Ku« rten 1988a,b). Consider a threshold
network with N nodes. To each of these let us assign a
logical variable ¼i ˆ ¡1 or ‡ 1. The states f¼ig of the N
nodes are simultaneously updated according to equation
(1) where the links wij are speci¢ed by a matrix. The
entry value of the connectivity matrix wij may take values
¡1 and ‡ 1 in case of a link between i and j, and the
value zero if i is not connected to j.

The system that is evolved is the set of couplings wij in
a single network. One evolutionary time-step of the
network is as follows.

(i) Create a daughter network by (1) adding, (2)
removing, or (3) adding and removing a weight in
the coupling matrix wij at random, each option
occurring with probability p ˆ 1/3 . This means
turning wij ˆ 0 to a randomly chosen §1 or vice
versa.

(ii) Select a random input state f¼ig. Iterate simulta-
neously both the mother and the daughter system
from this state until either they have reached and
completed the same attractor cycle, or until a time
where f¼ig di¡ers between the two networks. In case
their dynamics are identical then replace the mother
with the daughter network. In case their dynamics
di¡er, keep the mother network.

Thus, the dynamics look for mutations which are
phenotypically silent, i.e. these are neutrally inherited
under at least some external conditions. Note that adding
a link involves selecting a new wi j, thus changing the rule
on the same time-scale as the network connectivity. Iter-
ating these steps represents an evolution which proceeds
by checking overlap in expression pattern between
networks. If there are many states f¼ig that give the same
expression of the two networks, then transitions between
them are fast. In contrast, if there are only very few states
f¼ig which result in the same expression for the two
networks, then the transition rate from one network to
the other is small. If this is true for all its neighbours then
the evolutionary process will be hugely slowed down.

Interestingly, other than in existing concepts of selective
neutrality (Gruener et al. 1996a,b; Reidys et al. 1997;
Schuster 1997; Sibani & Pedersen 1999; Van Nimwegen et
al. 1999), these transition rates are not constant in our
model of regulatory neutrality. In particular, they are
instead a function of the evolving connectivity K of the
network.

In ¢gure 1 the connectivity change with time for a
threshold network of size N ˆ 32 is shown. Time is
counted as number of attempted mutations. To under-
stand the evolution of the networks, we ¢rst remark that,
because mutations are local, only the cluster at which the
mutation took place is visible to the proposed phenotypic
test. For subcritical networks, which usually consist of
disconnected graphs, this means that acceptance rate
below critical connectivity will not depend on system
size. In the case of supercritical networks the dynamics
are dominated by their giant component. The acceptance
criterion, therefore, gets harder with increasing system
size: transition probabilities of neutral evolution towards
larger connectivity K decrease with K. Thus, most evolu-
tion will in practice be arrested slightly above critical
conditions. We observe that the relatively large variance
in K for small systems as shown in ¢gure 1 is con¢ned to
a smaller interval for larger systems simulated over the
same time. It is interesting to note that the e¡ective
critical connectivity of the evolved networks lies some-
where above Kc for a random network. This is a
consequence of the evolved structural features of the
network, a number of which will be described below.

One also observes that, especially for high connectivity,
the system may stay for a long time at a particular
network before an allowed mutation leads to punctuations
of the stasis. The overall distribution of waiting times is
approximately 1/t2§ 0:2. The wide variety of time-scales
implied by the 1/t 2 distribution re£ects the di¡erent
time-scales that are associated with networks of di¡erent
connectivity K. Thus, any particular network will have a
characteristic time-scale with exponentially distributed
waiting time. The 1/t 2 distribution originates from inte-
gration over this broad range of time-scales, re£ecting
that the probability of accepting a mutation decreases
exponentially with K, whereas the probability per
attempt to add a speci¢c link equals the probability to
remove it again.

One important feature of the evolution is the structure
of the evolved networks, which can be quanti¢ed by the
average length of attractors for the generated networks.
This is shown in ¢gure 2, where they are compared with
attractor lengths for random networks at the same
connectivity. One observes that the evolved networks
have much shorter attractors than the random ones; thus
our evolution scenario favours simplicity of expression.

To examine further the expression behaviour of the
networks, let us consider the size of frozen components as
introduced by Kau¡man (1969, 1990) for Boolean
networks. A frozen component is the set of nodes
connected to a given attractor that does not change at any
time when you iterate along the attractor, i.e. a frozen
component represents genes which are anaesthetized
under a given attractor /initial conditions. In ¢gure 3 one
sees that the frozen component for the evolved network
typically involves half the system, and thus is much larger
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Figure 1. Long time evolution for the connectivity of a
threshold network with N ˆ 32 nodes. Connectivities are
constrained to be below K ˆ 8. One observes long periods of
stasis interrupted by sudden changes, reminiscent of
punctuated equilibrium.



than the typical frozen component associated with attrac-
tors of randomly generated threshold networks. Also we
test frozen components for random one-mutant neigh-
bours of the selected ones, and ¢nd that these networks
also have huge frozen components.

Let us ¢nally look at the active part of the network and
the complexity of its expression pattern. Because a quite
large fraction of the nodes may belong to the frozen
component of the network, the remaining active part of
the nodes may behave di¡erently from the average
dynamics of the whole network. One possible measure is
the number of times each non-frozen node switches its
state during the dynamical attractor. In ¢gure 4 this
quantity is shown for both random networks and evolved
networks. One observes that the active part of the evolved
networks exhibits a much simpler expression pattern than
that of a random network of comparable connectivity.

Overall, implementing robustness as an evolutionary
criterion has observable consequences for both the
temporal evolution pattern and for con¢ning possible
genetic network architectures to those with simple expres-
sion patterns.

4. DISCUSSION

Some quantitative testing of the minimal evolution
scenario is possible on the macro-evolutionary scale.
Here, the intermittent evolution of the networks bears a
resemblance to the punctuated equilibrium observed for
species in the fossil record (Gould & Eldredge 1993).
Quantitatively, the 1/t 2 distribution of lifetimes for single
networks that one ¢nds for this model and for the earlier
version (Bornholdt & Sneppen 1998), compares well with
the similar scalings observed for the statistics of birth and
death of individual species in the evolutionary record
(Sneppen et al. 1995). In fact, the analogy can even be
¢ne-grained into a sum of characteristic lifetimes, each
associated with a given structural feature of the networks
(Bornholdt & Sneppen 1998). A similar decomposition is
known from the fossil record (Van Valen 1973), where

groups of related species display Poisson-distributed life-
times and, therefore, similar evolutionary stability.

A validation on the microlevel based on statistical
properties of genetic regulatory circuits has to be based
either on properties of genetic networks (Somogyi &
Sniegoski 1996) or on evolution and mutation
experiments of short-lived organisms such as E. coli
(Papadopoulos et al. 1999). A key number is the estimated
average connectivity K of 2! 3 in the E. coli genome
(Thie¡ry et al. 1998). Information on the overall organi-
zation of these genetic networks is obtained from gene
knock-out experiments.

Quantitative support for a connected genome can be
deduced from the experiments of Elena & Lenski
(1999) on double mutants, which demonstrated that about
30^60% of these (dependent on interpretation) change
their ¢tness in a cooperative manner. In terms of our
networks, we accordingly should expect a coupled genetic
expression for about half the pairs of genes. Although our
evolved networks can give such correlations for the
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Figure 2. Average length of periodic attractors for evolved
and for random networks. Also the periods of the unsuccessful
mutations in the presence of newly chosen random initial
conditions are shown, demonstrating that selection of
networks is indeed operating in structure space and the
speci¢c input con¢guration in the event of selection does not
play a major role.
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Figure 3. Average size of frozen components as a function of
connectivity for evolved and random networks. The frozen
component is the set of all nodes that do not switch during the
attractor. One observes that the robustness constraint in
evolution favours a larger frozen component.
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Figure 4. Average number of £ips per node in the non-frozen
part of the network, as a function of connectivity for evolved
and for random networks. The evolved networks show a
reduced activity in the non-frozen nodes resulting in simple
expression patterns compared to those of random networks of
the same connectivities. Notice that the number counts o¡^on
and on^o¡ transitions of the nodes as separate events.



connectivity estimate of 2^3 given by Thie¡ry et al.
(1998), the uncertainty is still so large that random
networks are also in accordance with the data. Further,
one should keep in mind that the E. coli genome is large
and not well represented by threshold dynamics of all
nodes, and also that only between 45 and 178 of the 4290
genes of E. coli are likely to mediate regulatory functions
(F. Blattner, http://www.genetics.wisc.edu/html/k12.html).
Thus, most of the detected gene^gene correlations
presumably involve genes that are not even regulatory,
but instead metabolic, with more indirect e¡ects on each
other than in the case of the regulatory genes. Presum-
ably, one would obtain stronger elements of both coupling
and correlation, if one specialized in regulatory genes.
Thus, one may wish for experiments where one- and two-
point mutations are performed in regulatory genes only.
A more direct test of our hypothesis of robustness in the
form of damage control as a selection criterion may be
obtained from careful analysis of the evolution of gene
regulation in evolving E. coli cultures.

Another interesting observation is the simplicity of
biological expression patterns. For example, as observed in
yeast many genes are only active one or two times during
the expression cycle (Cho et al. 1998); thus switching from
o¡ to on or on to o¡ occurs for each gene in this system
only a few times during expression. For random dynamical
networks of comparable size, one would expect much
higher activity. Thus, surprisingly simple expression
patterns are observed in biological gene regulatory
circuits. This bears resemblance to our model observation
where simplicity of expression patterns emerges as a result
of the evolutionary constraint of robustness.

5. SUMMARY

In this paper we have proposed a computer simulation
of evolution operating on logical networks. The scenario
mimics an evolution of gene regulatory circuits that is
governed by the requirement of robustness only. The
resulting dynamics evolve networks that have very large
frozen components and short attractors. Thus, they evolve
to an ordered structure that counteracts the increasing
chaos when networks become densely connected. The
evolved architecture is characterized by simplicity of
expression pattern and increased robustness to permanent
mutational £uctuations in the network architectureö
features that are also seen in real molecular networks.

We thank Stanley Brown for valuable comments on the
manuscript.
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