Bemerkungen zur Quantentheorie des Bahndreimpulses

Cornelius C. Noack
Universität Bremen, Fachbereich 1 – Physik
Postfach 33 0440, D – 28334 Bremen

In einführenden Lehrbüchern und Vorlesungen über Quantentheorie nimmt die Diskussion des Dreihimpulses gewöhnlich einen breiten Raum ein, nicht nur wegen seiner unmittelbaren Bedeutung für das Experiment, sondern vor allem auch, weil nach der Einführung der Grundgedanken und -begriffe der Theorie (meist anhand der Schrödingerschen Formalisierung) die konkrete Anwendung des Formalismus sich hier besonders klar darstellen läßt. Man geht hierbei meist aus vom Bahndreihimpuls der klassischen Punktmekanik.

\[\vec{L} = \vec{r} \times \vec{p} \]
\[\text{nach dem Übergang zur Schrödinger-Darstellung im Ortsraum durch die Ersetzung} \]

\[\vec{p} \rightarrow -i\hbar \text{grad} \]

stellt man fest, dass die drei Komponenten von \(\vec{L} \) untereinander nicht vertauschen und schreibt sodann die zu lösenden Eigenwertgleichungen

\[\vec{L}\times Y_{\ell m} = \hbar \lambda Y_{\ell m} \]
\[L_z Y_{\ell m} = \hbar m Y_{\ell m} \]

an. Dem Vorgehen von Dirac [1] folgend, löst man diese nun aber meist nicht direkt als partielle Differentialgleichungen in Polarkoordinaten, sondern man stützt sich ganz auf die Vertauschungsrelationen\(^1\)

\[[L_k, L_m] = i \varepsilon_{k m n} L_n \]

und erhält hieraus durch rein algebraische Manipulationen die bekannten Bedingungen für die Eigenwerte:

\[\lambda = \ell (\ell + 1) \quad , \quad \ell \geq 0 \quad \text{ganz- oder halb-zahlig}, \]
\[-\ell \leq m \leq \ell \quad , \quad \ell - m \quad \text{ganz-zahlig}. \]

\[\text{Der experimentelle Befund ist nun, dass für den } \text{Bahn-Dreihimpuls } \ell \text{ immer ganzzahlig ist. Diese zusätzliche Bedingung kann jedenfalls nicht aus den Vertauschungsrelationen (4) hergeleitet werden, da es ja Dreihimpulseoperatoren mit halbzahligen Eigenwerten durchaus gibt (Spin, Isospin). Man braucht also noch ein anderes Argument, um auch theoretisch halbzahlige Bahndreihimpulse auszuschließen. Hierzu greift man nun doch auf die Differentialgleichungsform der Eigenwertgleichungen (3) zurück, nämlich auf} \]

\[L_z Y_{\ell m} = -i \frac{\partial}{\partial \phi} Y_{\ell m}(\theta, \phi) = m Y_{\ell m}(\theta, \phi) \]

\[\hbar \text{ wird von jetzt ab immer weggelassen.} \]

\[\text{1} \]
und damit die Separationslösung
\[Y_{\ell m}(\theta, \phi) = e^{im\phi} Y_{\lambda m}(\theta) \, . \]
Es gilt also
\[Y_{\ell m}(\theta, \phi + 2\pi) = e^{2\pi im} Y_{\ell m}(\theta, \phi) \, , \]
da \((\theta, \phi)\) und \((\theta, \phi + 2\pi)\) aber den gleichen Raumpunkt darstellen, ist die Lösung nur für ganzzahlige \(m\) (und damit \(\ell\)) eindeutig, für halbzahlige zweideutig. Wegen dieser Zweideutigkeit sind die Lösungen mit halbzahligem \(\ell\) und \(m\) auszuschließen; das ist die in der Literatur fast universell verbreitete und immer wieder angeführte [2] Begründung.

Der Beweis von Born und Jordan [9] ist ganz algebraisch und stützt sich auf zwei Bemerkungen, die wir zunächst voranschicken, um dann die Argumentation in einer etwas verallgemeinerten Form in moderner Notation durchzuführen 3.

Erstens: Der Bahndrehimpuls muss, wie oben schon bemerkt, irgendeine zusätzliche, spezielle Eigenschaft besitzen, die über die bloßen Vertauschungsrelationen (4) hinausgeht und deshalb nur von der speziellen Form (1) herrühren kann. Eine solche Eigenschaft ist die Beziehung
\[\vec{p} \cdot \vec{L} = 0 \quad (6a) \]
bzw.
\[\vec{p} \cdot \vec{L} = 0 \quad (6b) \]
Die Dipolauswahlregel \(\Delta \ell \neq 0\) der Atomphysik ist, wie Born und Jordan [9] ausdrücklich bemerken, eine unmittelbare Folge von (6a). Die Beziehung (6b) andererseits braucht man, um die „Helizität“ eines Teilchens (definiert als Projektion des Dreihimpulses auf die Impulsrichtung als Polarisationsinterpretier zu können:
\[\lambda := \frac{\vec{J} \cdot \vec{p}}{|\vec{p}|} = \frac{\vec{L} \cdot \vec{S} + \vec{S} \cdot \vec{L}}{|\vec{p}|} = \frac{\vec{S} \cdot \vec{p}}{|\vec{p}|} \, . \]

Die beiden Beziehungen (6) erweisen also ihre direkte physikalische Bedeutung auch an anderer Stelle.

2Nur physikalisch messbare Größen, in der Quantenmechanik also Erwartungswerte von selbstadjungierten Operatoren, müssen eindeutig sein. Das bedeutet hier [4], dass in einem vorgegebenen System entweder nur ganzzahlige oder nur halbzahlige Drehimpulse vorkommen können.

3Eine andere Form des gleichen Beweises findet sich bei Green [10]. Dabei werden – nur um ihrer algebrischen Eigenschaften wegen – die Pauli’schen Spinmatrixen \(\sigma\) als Hilfgröße benutzt. Es erscheint zumindest in didaktischer Hinsicht nicht ganz gleich, in einem Beweis für die Ganzzahligkeit der Drehimpulseigenwerte ausgerechnet die Größen zu benutzen, die für das Auftreten halbzahliger Eigenwerte charakteristisch sind.
Zweitens: Ein Beweis der Ganzzahllichkeit ist geliefert, wenn es gelingt zu zeigen, dass aus der Existenz einer Lösung von (3) zum Eigenwert ℓ die Existenz einer Lösung zum Eigenwert $(\ell - 1)$ folgt, sofern nur $\ell > 0$. Denn daraus würde für jedes halbzahliges ℓ die Existenz einer Lösung zu $\ell = -\frac{1}{2}$ folgen, im Widerspruch zu $\ell \geq 0$ aus (5a).

Es sei nun \vec{K} irgendein vorgegebener Vektoroperator, d.h.

$$[L_h, K_m] = i \varepsilon_{hmn} K_n \, .$$

(7)

Der Einfachheit halber (die Einschränkung ist nicht wesentlich) nehmen wir außerdem an, dass die Komponenten von \vec{K} untereinander vertauschbar sind. Wir definieren dann einen neuen Vektoroperator $A^{(\ell)}$ durch

$$A^{(\ell)} := i (\vec{K} \times \vec{L}) - \ell \vec{K} \cdot \vec{L},$$

oder, in sphärischer Basis ausgeschrieben und leicht umgeordnet,

$$A^{(\ell)}_+: = -K_0 L_+ + K_+ (L_0 - \ell)$$
$$A^{(\ell)}_0: = +K_- L_+ + K_0 (L_0 - \ell) - \vec{K} \cdot \vec{L}$$
$$A^{(\ell)}_-: = +K_0 L_- - K_- (L_0 + \ell) \, .$$

(8a, 8b, 8c)

Mathematisch findet

$$[A^{(\ell)}_+, A^{(\ell)}_-] = 2 \vec{K}^2 L_0$$

(9)

sowie

$$[L_+, A^{(\ell)}_-] = 2 A^{(\ell)}_0$$
$$[L_0, A^{(\ell)}_-] = -A^{(\ell)}_0 \, .$$

(10a, 10b)

Es sei nun $|\ell, m\rangle$ ein Eigenvektor zu \vec{L}^2 und L_0. Dann folgt aus (8a, 8b)

$$A^{(\ell)}_+ |\ell, m = \ell\rangle = 0$$
$$A^{(\ell)}_0 |\ell, m = \ell\rangle = -\vec{K} \cdot \vec{L} |\ell, m = \ell\rangle \, ;$$

aus (9) folgt

$$A^{(\ell)}_+ A^{(\ell)}_- |\ell, \ell\rangle = -\ell \vec{K}^2 |\ell, \ell\rangle \, ,$$

so dass also $A^{(\ell)}_- |\ell, \ell\rangle$ für $\ell > 0$ sicher nicht verschwindet, wenn $\vec{K}^2 |\ell, \ell\rangle$ nicht verschwindet [dass $A^{(\ell)}_- |0, 0\rangle = 0$ ist, sieht man unmittelbar aus (8c)]. Aus (10a) und (10b) folgt nun

$$L_+, A^{(\ell)}_- |\ell, \ell\rangle = -2 \vec{K} \cdot \vec{L} |\ell, \ell\rangle$$
$$L_0, A^{(\ell)}_- |\ell, \ell\rangle = (\ell - 1) A^{(\ell)}_- |\ell, \ell\rangle \, .$$

(11a, 11b)

(11a) und (11b) zeigen, dass $A^{(\ell)}_- |\ell, \ell\rangle$ ein neuer Drehimpulseigenvektor zum Eigenwert $(\ell - 1)$ ist dann und nur dann, wenn $\vec{K} \cdot \vec{L} = 0$ ist. Wir haben also den folgenden

Satz: Gibt es einen Vektoroperator \vec{K} (mit vertauschenden Komponenten), der die Bedingung

$$\vec{K}^2 |\ell, \ell\rangle \neq 0 \, \text{ für alle } \ell > 0$$

(12)

erfüllt und für den überdies

$$\vec{K} \cdot \vec{L} = 0$$

(13)

gilt, so sind die DrehimpulsEigenwerte ganzzahlig.

\footnote{Wir verwenden die Notation $V\pm_\ell := (V\pm \pm iV_\ell^\prime)$. $V_\ell := V_\ell$ für alle vorkommenden Vektoroperatoren.}
Es ist instruktiv zu sehen, wie hier die Bedingung (13) in ganz natürlicher Weise eingeh. Dass in dem uns interessierenden Fall (wir ersetzen jetzt \vec{k} durch den Impuls \vec{p}) auch (12) erfüllt ist, ist klar: \vec{p}^2 hängt ja von den Winkelvariablen (θ, ϕ) gar nicht ab und ist, was die Drehimpulseigenfunktionen angeht, als multiplikative Konstante ($\hbar c$-Zahl3) anzusehen.

Pauli hat diesen Beweis gekannt und anerkannt [11], aber trotzdem noch viele Jahre später das Bedürfnis für eine tiefgreifende Analyse [5] empfunden, und spätere Autoren (soweit sie den Gedankengang von Born und Jordan überhaupt kannten) sind ihm darin gefolgt. Wie kommt das? Das ist wohl in der Hauptsache historisch zu verstehen. Obwohl schon frühzeitig die volle Äquivalenz der wellenmechanischen und der matrixmechanischen Formulierung der Quantenmechanik erkannt worden war [12], hatte sich in kurzer Zeit die wellenmechanische Formulierung in allen praktischen Rechnungen doch als so überlegen erwiesen, dass die Matrixformulierung darüber mehr und mehr in den Hintergrund trat. Dadurch hat sich die Deutung der Schrödingergleichung als partielle Differentialgleichung so selbständig gemacht, dass manche Physiker auch heute noch die Ersetzungsverschid (2) als das Grundprinzip der Quantentheorie ansehen, obwohl sie ja nur eine (wenn auch oft sehr bequeme) von vielen möglichen Darstellungen der Quantentheorie ist. Diese Gewöhnung führte dazu, die übliche Differentialoperatorform in Polarkoordinaten des Drehimpulses als etwas Fundamentales anzusehen. Stellt man sich aber einmal gänzlich auf diesen Standpunkt, d.h. sieht man die Gleichungen (3) als partielle Differentialgleichungen mit wohldefinierten Differentialoperatoren \vec{L}, \vec{L}_z an und sucht nach quadratintegrierbaren Lösungen, so gibt es eben nicht nur die Kugelfunctionen mit ganzzähliger ℓ, sondern zu jedem nicht-negativen λ gibt es ganz legitime Lösungen [8].

Auf der anderen Seite haben wir gesehen, wie schon aus der Form (1) der Bahndrehimpulsoperatoren zusammen mit den Vertauschungsrelationen (4) und (7) [letzter für $\vec{k} = \vec{p}$] die Ganzzahligkeit der Eigenwerte folgt. (4) und (7) sind direkte Folge der Heisenberg-Vertauschungsrelationen

$$[x_m, p_n] = \delta_{mn} i\hbar,$$

die Ersetzungsregel (2) soll ja aber gerade die Gültigkeit dieser Vertauschungsrelationen auch in der wellenmechanischen Formulierung sichern. Hier leigt also ein Widerspruch vor; diesen Widerspruch aufzudecken (und zu beseitigen) war das Ziel der Paulischen Arbeit [5].

Die Antwort ist die folgende: die Operatoren \vec{r}, \vec{p} und damit auch die Drehimpulsoperatoren \vec{L} sind ja, als Operatoren im Hilbertraum, unbeschränkt. Sie sind also nicht auf dem ganzen Hilbertraum definiert, auch die Vertauschungsrelationen (14) und damit (4) und (7) sind also nicht überall definiert. Es zeigt sich nun [5, 8], dass die „Kugelfunctionen“ $Y_{\ell m}$ mit unganzzem Index ℓ im Definitionsbe- reich der selbstadjungierten Erweiterung der Differentialoperatoren \vec{L}^2, \vec{L}_z liegen [und somit legitime Lösungen der Differentialgleichungen (3) sind], aber nicht mehr im Definitionsbe- reich der Vertauschungsrelationen (4). Das bedeutet, dass die unbedenkliche Ersetzung (2) in diesem Fall auf physikalisch unsinnige Resultate führt und nicht äquivalent ist mit den Heisenberg-Vertauschungsrelationen (14). In der Tat hat Kretzschmar [13] explizit gezeigt, wie die Ersetzungsregel (2) abzuändern ist, wenn man Basis im Hilbertraum einen vollständigen Satz von (mehrdeutigen) Kugelfunctionen mit unganzzem Index wählt. Das ist dann wieder genau das legitim wie die übliche Formulierung – insbesondere sind die Drehimpulsigenwerte ganzzahlig! – nur eben auf absurde Weise unbehaupt (siehe hierzu jedoch [14]).

Die ganze Betrachtung zeigt, das man zur Ausschließung der unganzen Bahndrehimpulse tatsächlich zu den üblichen Axiomen der Quantenmechanik noch eine Erschöpfung der zuulässigen Zustandsvektoren fordern muss: statt der üblichen Eindeutigkeit verlangt Pauli [5], dass die mehrfache Anwendung der Drehimpulsoperatoren auf eine Lösung von (3) mit festem λ nicht aus dem Raum der Lösungen zu diesem λ herausführen soll. Pauli begründet diese Forderung unter anderem damit, dass

3In gruppentheoretisch orientierten Lehrbüchern [13] entdigt man sich des ganzen Problems häufig mit dem schlichten Hinweis auf die Tatsache, dass nur die zu ganzzähligen ℓ gehörigen irreduziblen Darstellungen der Los-Gruppe (4) und auch die irreduziblen Darstellungen der ganzen Drehgruppe $O(3)$ existieren, während die halbzahligen ℓ zu Darstellungen der universellen Überlagerungsgruppe $SU(2)$ gehören. Allein dies verschiebt das Problem natürlich nur auf die – äquivalente – Frage, welche Axiome der Quantenmechanik denn die Beschränkung auf true (d.h. eindeutige) Darstellungen erforderlich.
mit Hilfe der Drehimpulsoperatoren erzeugte endliche Drehungen andernfalls auch aus diesem Raum herausführen würden, was mit der physikalischen Interpretation der ganzen Theorie unvereinbar wäre.

Um Missverständnissen vorzubeugen, sollte betont werden, dass durch diese Schlagzeile keinerlei Zweifel an der Äquivalenz des Heisenberg- mit dem Schrödinger-Formalismus aufkommen können. Lediglich das Kriterium dafür, welche Zustandsvektoren als unphysikalisch auszuschließen sind, ist im einen Fall einfacher und physikalisch durchsichtiger formulierbar als im anderen. Doch schon dieser Formulierungsunterschied sollte, wie unser Blick auf die Literatur zum Bahndrehimpuls überzeugend zeigt, Grund genug sein, dem Heisenberg-Formalismus mehr Raum in der Lehre zu geben, als dies gemeinhin der Fall ist.

*

Die vorliegende Arbeit ist schon vor vielen Jahren entstanden, aber zunächst unveröffentlicht geblieben, weil der Autor die schier endlose Literatur zu diesem Thema nicht weiter anreichen wollte. Da aber immer noch neue Lehrbücher mit immer den gleichen alten (und irreführenden) Argumenten erscheinen, kann die Verbreitung von Altbekanntem in pädagogischer Hinsicht vielleicht doch von Nutzen sein.

Literatur und Anmerkungen

[2] unter der neuen Lehrbuchliteratur siehe zum Beispiel:

6 Dies bedeutet gleich auch die halbzahligen Lösungen der Differentialgleichungen (3) eliminiert werden, liegt daran, dass die Bedingung $\gamma^2 \cdot \mathbf{L} = 0$ in der Differentialoperatormform von \mathbf{L} natürlich implizite enthalten ist.
7 Soweit in der Lehrbuchliteratur andere korrekte Beweise der Ganzzahligkeit der Drehimpulsquantenwerte zu finden sind [16], beruhen sie alle auf dieser Forderung, ohne dass sie jedoch irgendwie explizit formuiliert wird.

